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X-12-ARIMA is the Census Bureau’s new seasonal-adjustment program. It provides four types of
enhancements to X-11-ARIMA—(1) alternative seasonal, trading-day, and holiday effect adjustment
capabilities that include adjustments for effects estimated with user-defined regressors; additional
seasonal and trend filter options; and an alternative seasonal-trend-irregular decomposition; (2) new
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The Census Bureau’s well known X-11 program was in-
troduced in 1965 (Shiskin, Young, and Musgrave 1967). It
was the product of over a decade of development begin-
ning with “Method I” in 1954, followed by 12 experimen-
tal variants (X-0, X-1, etc.) of “Method II,” culminating
in X-11 (Shiskin 1978). X-11 followed in a long tradition
of empirical smoothing and seasonal-adjustment procedures
(Bell and Hillmer 1984), particularly the “ratio-to-moving-
average” method of Macaulay (1931). The early Cen-
sus Bureau methods were the first computerized seasonal-
adjustment methods. X-11 became something of a standard
that was used by statistical agencies around the world. Im-
portant features of X-11 that contributed to its widespread
use are its treatment of atypical (“extreme”) observations,
its variety of moving averages for estimating evolving trend
and seasonal components (and its methods and diagnostics
for selecting among these), its refined asymmetric moving
averages for use near the ends of time series, and its method
for estimating trading-day effects.

Statistics Canada’s X-11-ARIMA seasonal-adjustment
program (Dagum 1980) contained all the capabilities of X-
11 and provided important improvements. The most im-
portant is X-11-ARIMA’s ability to extend the time series
with forecasts and backcasts from autoregressive integrated
moving average (ARIMA) models prior to seasonal adjust-

ment. The use of forecast and backcast extensions results
in initial seasonal adjustments whose revisions are smaller,
on average, when they are recalculated after future data be-
come available; see Huot, Chiu, Higginson, and Gait (1986)
and Bobbitt and Otto (1990), for example. Extension over-
comes deficiencies in the preliminary X-11 trend-estimation
procedure at the ends of the series, especially in the first and
last half-year. In the additive decomposition case, extension
with optimal forecasts and backcasts for the half length of
the symmetric seasonal filter used minimizes revisions in a
mean squared sense. The history of this optimality property
and an elegant derivation were given by Cleveland (1983).

Other X-11-ARIMA improvements include its more sys-
tematic and focused diagnostics for assessing the quality of
its seasonal adjustments, which enable users to get good re-
sults more easily. And X-11-ARIMA offers diagnostics for
comparing indirect and direct seasonal adjustments of se-
ries that are aggregates of multiple component series. X-11
did not calculate indirect adjustments.

The Census Bureau’s new X-12-ARIMA program in-
cludes essentially all the capabilities of the latest version
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of X-11-ARIMA, X-11-ARIMA/88 (Dagum 1988), includ-
ing all the capabilities of X-11. The major improvements
in X-12-ARIMA address inadequacies of X-11 not targeted
by X-11-ARIMA/88, as well as limitations in the model-
ing and diagnostic capabilities of X-11-ARIMA/88. These
major improvements are the focus of this article; they are
discussed and illustrated in Sections 1-5. We shall outline
these sections, but first we briefly discuss the general struc-
ture of X-12-ARIMA.

Plans for X-12-ARIMA developed around the operation-
flow diagram of Figure 1. This posits a regARIMA (lin-
ear regression model with ARIMA time series errors)
modeling subprogram that can provide forecasts, back-
casts, and prior adjustments for various effects before the
seasonal-adjustment subprogram in the central box is in-
voked. The final box in Figure 1 represents a set of post-
adjustment diagnostic routines that can be used to ob-
tain indicators of the effectiveness of both the modeling
and the seasonal-adjustment options chosen. The seasonal-
adjustment methodology symbolized by the central box is
an enhanced version of the X-11 methodology. A significant
number of the enhancements were suggested by seasonal-
adjustment experts at statistical offices and central banks in
the United States, Canada, the United Kingdom, Germany,
New Zealand, and Japan. The improvements introduced in
X-11-ARIMA/88 were also influential.

X-12-ARIMA

RegARIMA Models
(Forecasts, Backcasts,
Preadjustments)

5

Modeling and Model
Comparison Diagnostics

§

SEASONAL ADJUSTMENT
(Enhanced X-11)

DIAGNOSTICS
(including revisions,
sliding spans, spectra,
M1—-M11, Q, etc.)

Figure 1. Flow Diagram for Seasonal Adjustment With X-12-ARIMA.
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The major methodological improvements of X-12-
ARIMA fall into three general groups that are discussed in
the sections indicated—new X-11 adjustment options (Sec.
1), new diagnostics (Sec. 2), and new modeling capabili-
ties emphasizing regARIMA modeling and model selection
(Sec. 3). Section 4 illustrates how these modeling capabili-
ties can address real problems that arise in seasonal adjust-
ment. Section 5 briefly discusses another major improve-
ment of X-12-ARIMA—its new user interface. Section 6
provides concluding remarks and an ftp address for obtain-
ing the program. We now give a more detailed overview.

Section 1 discusses how new options in X-12-ARIMA
provide additional flexibility in the basic seasonal-
adjustment methodology of X-11 and X-11-ARIMA. New
filter options include a longer seasonal moving average, al-
lowance for user specification of Henderson trend filters of
any (odd) length, and slight modifications to some of X-11’s
asymmetric moving averages so that more are derived from
a single optimization principle (outlined in the Appendix).
The program also provides a “pseudo-additive” decomposi-
tion that has been found useful for series with periodically
small or zero values. Finally, improvements were made
in how trading-day and other regression effects, including
user-defined effects (a new capability), are estimated from
a preliminary version of the irregular component. (Alter-
natively, such effects can be estimated directly from the
observed time series using the program’s regARIMA mod-
eling capabilities.)

Section 2 discusses significant diagnostic capabilities X-
12-ARIMA provides beyond those of X-11 and X-11-
ARIMA. These include spectrum estimates for detection
of seasonal and trading-day effects and also sliding spans
(Findley and Monsell 1986; Findley, Monsell, Shulman, and
Pugh 1990) and revisions history diagnostics for assessing
the stability of seasonal adjustments. We were motivated in
this development by our experience that, although the diag-
nostics of X-11-ARIMA are an important advance beyond
those of X-11, they sometimes fail to identify series that
cannot be satisfactorily adjusted. They also sometimes give
an incorrect indication as to whether the direct or an indi-
rect adjustment of an aggregate series should be preferred
(see the examples in these articles).

Other important features of X-12-ARIMA derive from
its regARIMA modeling capabilities; these are discussed in
Section 3 and illustrated in Section 4. X-11-ARIMA lacks
the capability to add regression effects to the models used
for forecast extension. Although preadjustment for trading-
day and other regression effects estimated from irregulars
(the approach taken by X-11-ARIMA/88) may usually do
as well for point forecasts, this approach is more limited
than use of regARIMA models, as our later discussion will
show. X-12-ARIMA’s use of regARIMA models can po-
tentially improve forecasts and backcasts and, through its
outlier detection capabilities, help robustify model param-
eter estimates and model forecasts against additive outliers
and level shifts.

The focus in Sections 3 and 4 is not, however, on advan-
tages of using regARIMA models for forecast extension.
Rather, it is on a variety of important direct applications
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for regARIMA models in seasonal adjustment. These in-
clude the following: (1) regARIMA models for trading-day
and holiday effects (Bell and Hillmer 1983) provide more
reliable diagnostics for the presence of such effects than do
F statistics of regression models fit to the irregular compo-
nent of the seasonal decomposition as in X-11 (see Secs. 1.4
and 3.3). (2) Chang and Tiao (1983) and Bell (1983) showed
how regARIMA models can be used to detect additive out-
liers (AQO’s) and level shifts (LS’s). (See also Chang, Tiao,
and Chen 1988, Sec. 3.2, and Appendix C.) Allowance for
such outlier effects in a model can help protect the model’s
coefficient estimates and forecasts against corruption (Bur-
man and Otto 1988; Ledolter 1989). (3) The ability to handle
AQ’s provides a capability for dealing with small amounts
of missing data: Bruce and Martin (1989) observed that ex-
act treatment of missing observations is approximately the
same as replacing missing observations by their estimated
AQO effects (see Sec. 4.2). (4) Preadjustment for LS’s (be-
fore seasonal adjustment by X-11) can overcome one of the
most troubling common sources of difficulty for X-11—the
inability of its trend filters to track sudden changes in level.
For example, Figure 2 shows the graph of the series of net
income from U.S. retail sales and the modified series re-
sulting from the use of an LS regressor in a regARIMA
model of the log series to remove the precipitous drop in
level in the first quarter of 1982. (This drop was caused by a
governmental action, called the Paperwork Reduction Act,
that took smaller companies out of the survey universe.)
(5) regARIMA models can be used to test for changes in
seasonal pattern, in trading-day effects, and so forth. Note
from Figure 2 that the net income series from the reduced
universe appears to have a different, more stable seasonal
pattern than the pre-1982 series from the larger universe.
In Section 4.1, we shall show how regARIMA models can
be used to test this series for a change in seasonal pattern.

To complement its regARIMA modeling capabilities X-
12-ARIMA also provides extensive model-selection diag-
nostics, including recently developed diagnostics based on
out-of-sample forecast performance. The need for such di-
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Figure 2. Net Income (Sales — Costs) From U.S. Retail Sales With
and Without LS Adjustment: , Original; - - -, Adjusted.

agnostics in seasonal adjustment will become clear in Sec-
tions 3 and 4: Many of the model comparisons that arise
naturally within the rich class of regARIMA models ap-
propriate for time series with seasonal and calendar effects
are not addressed by standard statistical tests.

Finally, Section 5 briefly illustrates the new user interface
of X-12-ARIMA. This interface, which uses a simple, self-
descriptive command language, greatly simplifies the pro-
gram’s use in both production and research environments.

1. NEW X-11 ADJUSTMENT OPTIONS

We begin with a review of the decomposition procedures
of X-11. This serves as background for the discussion of the
program’s new seasonal and trend moving average options
in Section 1.2 (and Appendix B) and its new decomposition
option in Section 1.3. The final Section 1.4 explores is-
sues surrounding the estimation of regression effect compo-
nents, such as trading-day components, from the irregulars.
It includes a derivation of X-11’s deseasonalized model for
multiplicative trading-day effects and discussion of how the
derivation’s model-deseasonalization approach is extended
in X-12-ARIMA to the additive and other decompositions
and to other regression effects.

1.1 Decompositions for Seasonal Time Series

The basic seasonal-adjustment procedure of X-11 and X-
11-ARIMA decomposes a monthly or quarterly time se-
ries into a product of (estimates of) a trend component, a
seasonal component, and a residual component, called the
irregular component. Such a multiplicative decomposition
is usually appropriate for series of positive values (sales,
shipments, exports, etc.) in which the size of the seasonal
oscillations increases with the level of the series, a charac-
teristic of most seasonal macroeconomic time series. Under
the multiplicative decomposition, the seasonally adjusted
series is obtained by dividing the original series by the es-
timated seasonal component. The values of the estimated
seasonal component are called seasonal factors. There is
also an analogous additive decomposition, which decom-
poses the series into a sum of trend, seasonal, and irregular
components, with the seasonally adjusted series obtained
by subtracting away the estimated seasonal component. Al-
though analyses of the properties of X-11 often focus on
the additive decomposition (e.g., Cleveland and Tiao 1976;
Wallis 1982; Ghysels, Granger, and Siklos 1996), the mul-
tiplicative decomposition is used far more frequently.

X-12-ARIMA retains the basic multiplicative and ad-
ditive decompositions. Moreover, in common with X-11-
ARIMA, the X-12-ARIMA program can calculate a second
multiplicative decomposition by exponentiating the addi-
tive decomposition of the logarithms of the series being
adjusted. This is called the log-additive decomposition. It
is used mainly for research purposes, because it requires
a bias correction for its trend estimates (due to geomet-
ric means being less than arithmetic means) as well as a
different calibration for extreme value identification based
on the lognormal distribution. Section 1.3 describes a new,
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fourth decomposition, the pseudo-additive decomposition,
that was developed at the U.K. Central Statistical Office.

Following X-11, the default scheme of X-12-ARIMA for
obtaining the various three-component decompositions of a
time series is a three-stage procedure. This is presented in
Appendix A for the simplified situation of a series with no
extreme values. It is further assumed that the series has been
extended far enough by forecasts and backcasts that the data
required by the formulas in Appendix A are available for all
months ¢ in the span of the observed series. The only cal-
culations whose role may not be clear are those of Step (d)
in Stages 1 and 2. Their effect is usually to make 12-month
totals of the adjusted series be close to the corresponding
totals of the unadjusted series. [The log-additive decompo-
sition is not explicitly presented in Appendix A, because its
computations parallel those of the additive decomposition.
In X-12-ARIMA, the log-additive decomposition includes
a bias-correction due to Thomson and Ozaki (1992), which
is applied to the exponentiated trend component.]

1.2 X-11 Seasonal Adjustment and Trend Filters

1.2.1 Symmetric Seasonal Filters. The symmetric sea-
sonal moving averages used in step (c) of Stages 1 and 2
in Appendix A have a similar structure: They are simple
3-term moving averages, of simple averages of odd length,
2n + 1, of SI ratios (detrended series values) from the same
calendar month as month ¢,

1
SPE = o (Sih + SP + ST
with
52n+1 —
Sf’ *X(@n+1) ¢ referred to as the 3 x (2n + 1) seasonal mov-

ing average or seasonal filter. In the default setting of X-
11, the 3 x 3 seasonal moving average is used at step (c)
of Stage 1 and the 3 x 5 seasonal moving average at step
(c) of Stage 2. X-12-ARIMA and X-11-ARIMA/88 differ
from X-11 in that step (c) of Stage 2 uses a criterion due
to Lothian (1984) to select from among four filters—the
3% 3,3 x5, and 3 x 9 moving averages and the average of
all SI ratios from the same calendar month as t, the sta-
ble seasonal average. Optionally, in all three programs the
user can specify any of these moving averages for use in
any calendar month. The chosen averages are then used in
step (c) of both Stages 1 and 2. In X-12-ARIMA, there is
also an optional 3 x 15 seasonal moving average. This fil-
ter was used in X-10 and in a customized version of X-11
at the German Bundesbank as an alternative to the stable
seasonal average for series of length at least 20 years. The
appropriateness of longer seasonal moving average filters
has been suggested by researchers investigating ARIMA-
model-based signal-extraction seasonal adjustments. (See
Bell and Hillmer 1984, pp. 308-309).

1.2.2 Symmetric Trend Filters. The symmetric Hen-
derson trend (or “trend-cycle”) moving averages used in
step (a) of Stages 2 and 3 will perfectly reproduce a cu-
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bic polynomial. Moreover, their “weights change
with j as smoothly as possible in a sense we explain in
Appendix B, where their formula is given. In X-11 and X-
11-ARIMA /88, either the user or the automatic “variable
trend cycle curve routine,” discussed at the end of Appendix
B, chooses among Henderson filters of length 9, 13, and 23.

In X-12-ARIMA, the automatic selection procedure is
the same, but the user can alternatively specify any odd-
number length 2H + 1. The specified Henderson filter is
then used in step (a) of both Stages 2 and 3. In recent years
the Australian Bureau of Statistics has been using 15-term
and 17-term Henderson filters in their customized version
of X-11 as alternatives to the 13-term filter.

Figure 3 displays the squared gain functions (up to fre-
quency A = .25)

|
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of the 13- and 17-term Henderson filters (H = 6,8), to-
gether with the squared gain functions of the resulting X-
11 additive-decomposition trend-component extraction fil-
ters for a monthly series. These trend extraction filters are
obtained by combining (convolving) all of the additive de-
composition’s linear operations in Stages 1-3 used to obtain
the final trend estimates Tt(3). Recall that the product of the
squared gain function and the spectral density of the filter’s
input series gives the spectral density of the output series
when the input series is stationary (see Koopmans 1974,
p. 86). Thus, at frequencies at which the gain function is
close to 0, the variance components of the input series are
suppressed. Figure 3 shows that the Henderson filters sup-
press the higher-frequency components of a stationary input
series and essentially preserve the magnitudes of the com-
ponents whose frequency is close enough to 0. A similar
effect can be expected with nonstationary input series (see
Oppenheim and Schafer 1975, p. 110). As Figure 3 shows,
the squared gain function of the 13-term Henderson filter
has substantial power beyond the first seasonal frequency
1/12. This results in the peak just beyond this frequency
in the squared gain of the associated trend extraction fil-
ter. (The preceding dip down to 0 at 1/12 comes from the
seasonal-adjustment operations applied before the applica-
tion of the Henderson trend filters.) Because of this peak,
it has been claimed that X-11’s final trend estimate from
the 13-term Henderson filter exaggerates short-term cycli-
cal behavior (Schips and Stier 1995). The 17-term Hender-
son filter is the shortest that does not result in a significant
peak beyond the first seasonal frequency in the squared gain
function of the trend extraction filter.

1.2.3 Asymmetric Filters. Now we consider briefly the
asymmetric filters used near the beginning and end of a
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Figure 3. Henderson and Additive X-11 Trend Filter Squared Gains for Frequencies [0, .25]. The deseasonalization prior to final trend estimation
produces the 0 at A = 1/12 in the trend filter gains, with the result that some higher-frequency components will be suppressed less than lower-
frequency components near A = 1/12. When the 17-term Henderson filter is used, the second peak in the trend filter's squared gain is quite smalil.

by use of the 13-term Henderson filter.

series that is not extended, or not fully extended, by fore-
casts and backcasts. In X-12-ARIMA, the coefficients of
the asymmetric filters associated with the 3 x 9 seasonal
filter are slightly modified versions of the filters in X-11
and X-11-ARIMA. The modifications were done to obtain
filters that are derivable from an unpublished optimization
principle developed by Musgrave (1964) that is detailed in
Appendix B. There it is explained that the asymmetric re-
placements for both the 3 x 9 seasonal filter and the Hen-
derson filters are determined by values chosen for a certain
“noise-to-signal ratio.” For the Henderson filters, the X-12-
ARIMA user can change this ratio to obtain different asym-
metric filters. This is one of the program’s “rarely used op-
tions,” intended for the researcher or specialist rather than
for the general user. An unpublished formula of M. Doherty
for the exact solution of Musgrave’s optimization [given as
(B.3) in Appendix B] made it easy for us to implement both
this option and the option to allow the user to specify Hen-

. Consequently, trends from this filter have negligible susceptibility to displaying anomalous higher-frequency osciilations compared to trends obtained

derson filters of any odd length (replaced by appropriate
asymmetric filters near the ends of the series).

X-12-ARIMA can produce a smoothed version (“trend”)
of a nonseasonal series through application of any of its
Henderson trend filters directly to the input series, or to the
series modified by regression preadjustments (if, for exam-
ple, there are outliers).

1.3 The Pseudo-Additive Decomposition

The pseudo-additive decomposition has the form Y; =
Tt(St + It — 1) = Tt(st - 1) -+ TtIt. The algorithm for its
calculation is summarized in Appendix A. According to M.
Baxter of the U.K. Office for National Statistics, where it
has been used for almost 20 years, this procedure was devel-
oped for seasonally adjusting nonnegative time series that
have quite small, possibly zero values in the same month
or months each year. Such months have seasonal factors
close to 0, and dividing by such very small factors pro-
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duces unsatisfactory results. Adjustment of these months
by subtraction of an estimate of T3(S; — 1) ~ —T; is more
likely to give an estimate close to the trend of the series,
because Y; ~ 0. Agricultural products that are available
only at certain times of year can give rise to such series.
So can institutional behavior such as the shutdown of facto-
ries because of summer vacations, as the graph of an Italian
car-production series in Figure 4 illustrates.

Figure 4 shows both the additive and the pseudo-additive
adjustments of recent years of this series. The first impres-
sion might be that the additive adjustment is reasonable ex-
cept in August of the last year. In this month, the additively
adjusted series incorrectly suggests that a very low level
of production, essentially unchanged from the two preced-
ing Augusts, represents a substantial increase. The pseudo-
additive adjustment provides a more plausible, neutral value
for this month. It also presents the Augusts of 1989 and
1990 as having significantly increased production, which
they do have relative to other Augusts, a feature not indi-
cated as clearly by the additive adjustment. When we cal-
culated the revisions history diagnostics (presented in Sec.
2.2) for both adjustments of this series, however, the results
(not given in this article) showed that the pseudo-additive
adjustments of Augusts are much more likely than the ad-
ditive adjustments to experience large revisions as future
data are added to the series. (Multiplicative adjustments are
more volatile still and give implausible adjustments.)

It is an unusual aspect of the pseudo-additive decompo-
sition that the adjustment quantities removed by the adjust-
ment operation are not the level-independent quantities Sy
as in the other decompositions but are instead the level-
dependent quantities 7;(S; — 1); see the steps (e) in Ap-
pendix A. Thus, difficulties in estimating 7; at the ends of

150
L

° 7

T T T

T T T T
1988 1989 1990 1991 1992 1993 1894

Figure 4. ltalian Car Production ( ) With Additive (----) and
Pseudo-Additive (- - -) Seasonal Adjustments. In ltaly August is the main
month for vacationing, and the resulting very low levels of car production
make this series unsuitable for multiplicative adjustment. The graphs
show that the pseudo-additive adjustment more accurately reflects the
increased production in August of 1989 and 1990. Moreover, unlike the
additive adjustment, the pseudo-additive adjustment does not suggest
that the very low August 1993 value, which differs little from the August
1991-1992 values, represents a substantial increase.
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series (see Sec. 2.2) can be expected to increase the variabil-
ity of the adjustments there. This decomposition can yield
negative adjustments for nonnegative series.

1.4 Extracting Regression-Effect Components From the
Irregulars

The concern in this section is with the estimation of
calendar effects and other effects by means of regression
models for the irregular component. Trading-day effects
are estimated this way in X-11 and X-11-ARIMA. More
general regression modeling of the irregular component is
possible in X-12-ARIMA, which offers Easter-holiday and
other calendar-effect regressors, as well as indicator vari-
ables to identify extreme irregulars and diminish their in-
fluence when other regression effects are estimated. User-
defined regression models can also be estimated. Alterna-
tively, X-12-ARIMA can estimate all of these effects by
means of regARIMA models for the observed time series.
This latter approach has important advantages, which we
shall elaborate later, for making inferences about the re-
gression effects. Our decision to retain and enhance the
older approach of modeling the irregulars was motivated
by its historical success, by practical considerations men-
tioned later, and by the requests of statistical agencies and
central banks in different countries who wish to be able to
estimate their own country-specific working-day and holi-
day effects in this way.

The irregulars series, being the residual component after
deseasonalization and detrending, is a natural series from
which to estimate further components. Being an almost un-
correlated series, it has the appealing simplicity of being a
candidate for ordinary least squares (OLS) regression esti-
mation of additional components. There is a complication,
however: Its deseasonalized and detrended nature implies
that regression models for the irregulars should also be de-
seasonalized and detrended. In Section 1.4.1 we illustrate
how this is done for a natural model of trading-day ef-
fects. We obtain thereby both a derivation of the trading-day
model of Young (1965) used by X-11 and X-11-ARIMA
and also a derivation of X-12-ARIMA’s default regARIMA
regression model for trading-day effects estimated from the
logarithms of the observed time series. It is an important
feature of this model that the effect of month length is
known in advance and does not require estimation. The
estimation of other calendar effects from the irregulars is
discussed briefly in Section 1.4.2.

1.4.1 Trading-Day Effects and Young’s Model. We be-
gin with a brief explanation of trading-day effects. In addi-
tion to seasonal effects, monthly time series that are totals
(“flows™) of daily economic activities are often influenced
by the weekday composition of the month. The presence of
such an effect is revealed when the series values for a given
calendar month depend in a consistent way over time on
which days of the week occur five times in the month. With
retail grocery sales, for example, there is usually lower vol-
ume on Mondays, Tuesdays, and Wednesdays than on days
later in the week. Thus, sales in March, say, will be rela-
tively lower in a year in which March has an excess of early
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weekdays and higher when March has five Fridays and Sat-
urdays. To a lesser extent, series of “stocks” measured on
the same day each month, such as inventories or unfilled
orders as of the last day of the month, are sometimes sensi-
tive to the day of the week on which their value is obtained.
Finally the average daily effect in flow series can give rise
to a length-of-month effect. Because the length of February
is not the same every year, this effect is not completely ab-
sorbed by the seasonal component. The residual effect left
in Februaries is called the Leap Year effect.

Recurring weekday composition effects in monthly (or
quarterly) economic time series are called trading-day ef-
fects. Flow trading-day effects were discussed by Young
(1965) and stock trading-day effects by Cleveland and
Grupe (1983) (see also Bell 1984; Chen and Findley 1996a).
Like seasonal effects, trading-day effects can make it diffi-
cult to compare series values across months or to compare
movements in one series with movements in other series.
For this reason, when estimates of trading-day effects are
statistically significant, they are usually adjusted out of the
series when seasonal adjustment is performed. In this ad-
justment context, they form a fourth decomposition com-
ponent, the trading-day component.

To obtain a model for trading-day effects in monthly flow
series, suppose that the jth day of the week has effect a;,
where j = 1 designates Monday, j = 2 Tuesday, ...,j =7
Sunday. Then if D;, denotes the number of occurrences of
day j in month ¢, the cumulative effect for the month will
be Z;:l Oéijt. Set a = Z;:l Oé]/7 and Nt = 237':1 Djts
the length of month ¢. Because 237‘:1 (o —a@) = 0, we have

7 7
Zaijt = alN; + Z (Olj —
j=1 j=1

(Djt — D7), (1)

6
= alN; + Z (Oéj —
J=1

a decomposition into a length-of-month effect and the net
effect of the daily contrasts (a; — &). Replacing Dj; in the
center expression of (1) by D;; — 4 changes nothing and
makes it clear that this second component is equal to the
sum of the (o; — &) for those weekdays j that occur five
times in month ¢{. We shall obtain a deseasonalized and
level-neutral version of (1) by removing calendar-month
means.

The monthly calendar repeats itself over any 28-year cy-
cle (until the year 2100 when the 29th of February is omit-
ted). Consequently, the variables D;; are periodic with pe-
riod 336 (= 12 x 28) months, and the calendar-month means
(1/28) Ziil Dj + 4121 have the same value for all ¢ and j. It
follows that the 28-year calendar-month means of the dif-
ference variables D;; — D7, on the right in (1) are 0. This
implies that the final expression in (1) involving these dif-
ferences has a seasonal component of 0 and also a level
component (336-month mean) of 0. Thus the seasonal and
level components of (1) reside in the calendar-month means
of &N;. Because Ny 45 = N, these are given by aN; with
N = (1/4) Zi:l Nii12k. How these components are re-

moved from the model depends on the type of seasonal
decomposition used to obtain the irregulars.

For the usual case of a multiplicative decomposition, we
then deseasonalize and detrend the trading-day effect by
dividing (1) by aNy. Setting §; = (a; /@) — 1, this yields

@

Zﬁ ( Dn) _ S (B +1)D
J * Nt*

This is the formula for trading-day effects given without
derivation by Young (1965). With ft denoting a preliminary
estimate of the irregular component, the X-11 program and
its direct descendants estimate 3i,..., 03¢ (and thus 3; =
— 2]6':1 B;) by the OLS fitting of the regression model

6
NiIy— Ny = B;(Djs — D) + ex. (3)

=1

In X-12-ARIMA, the analog of (3) for the additive de-
composition is obtained by subtracting &N, from (1). This
yields

6
=Bo(Ne = N;)+>_Bj(Djs — D) + e, (4)

j=1

where now ) = @ and 3; = o; — & for 1 < j < 6. Thus,
in the additive case, seven coefficients must be estimated
instead of six. In X-11 and X-11-ARIMA, the regressor
Ny — N; is not used. [Young told us that he agrees that X-
11 should have used (4).] For the pseudo-additive decom-
position, letting N = (1/48) 31, Niyx = 30.4375 (the
average month length), it can be shown that deseasonaliza-
tion and detrending lead to trading-day factors of the form
1+ (N, = Nf)/N + 37, 8i(Dje — Drt) /.

Finally, to motivate the regARIMA regression model con-
sidered in Section 3 for logarithms of the observed series,
we need the trading-day factor formula for the log-additive
decomposition. Taking the logarithm on the left in (2) and
using log(1 + z) = z, one obtains

. 6
N + Zb’] (-———*D”)

log 1—|—

Q

" 6
el +Z@( Brcln).

The summation on the right in (5) has 28-year-calendar-
month means equal to 0 and thus has no seasonal or trend.
Hence, it can be taken as the regression expression for
trading-day effects in the additive irregular component of
the logs of the time series being adjusted. Exponentiating,
using e* ~ 1 + z, and setting 3 = 3; /N, we obtain both
an exact and an approximate trading-day factor formula for
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the log-additive case,

R
2| =
(0]
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-
=
S
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3

The approximating second expression, further simplified by
treating N/N; as if it were equal to 1.0, defines X-12-
ARIMA’s default regARIMA model factors for trading-day
effects in the logarithms of the observed time series. [See
(14) in Sec. 3.]

There is an alternative to the deseasonalization and de-
trending approach just illustrated that is most appealing
with additive decompositions. This is the “matched filter-
ing” procedure used for the trading-day regression in the
SABL seasonal-adjustment program, described by Cleve-
land and Devlin (1982) and Cleveland (1983). In this pro-
cedure, the “irregular filter” is applied to the regressors D,
in (1) prior to the irregulars series being regressed on them.
(The irregular filter corresponds to applying all of the lin-
ear operations of Appendix A used to calculate the irregular
component of a series.) Because this is obviously another
way to deseasonalize and detrend the trading-day effect, this
may accomplish much the same thing as the procedure dis-
cussed previously. The matched filtering approach is also
plausible when an additive decomposition is obtained for
a transformed version of the original series, as in the log-
additive case. It is unclear how matched filtering applies to
the multiplicative or pseudo-additive decompositions.

1.4.2 Other Regressors and Robustification of the Re-
gressions Against Additive Outliers. Since the early 1970s,
the versions of the X-11 program used at the Census Bu-
reau also obtained estimates of the effects on retail sales
of Easter and of the moving U.S. holidays Labor Day and
Thanksgiving. Easter effects, for example, can increase re-
tail sales of clothing in the week or so prior to Easter or
decrease factory shipments in certain industries a few days
before Easter. [The X-11 procedure for estimating Easter
effects was detailed by Chen and Findley (1996b).] X-11-
ARIMA /88 estimates an Easter effect from the series of ir-
regulars using a different procedure, described by Dagum,
Huot, and Morry (1988). In X-11 and X-11-ARIMA/88,
the trading-day and holiday effects are estimated iteratively
rather than simultaneously.

In X-12-ARIMA, these effects can be estimated simul-
taneously from the irregulars. With such a diverse set of
regressors, however, the deseasonalization and detrending
procedure exemplified previously can lead to nonlinear
regression models (Chen and Findley 1996a). These can
sometimes be linearized easily. [For example, the approx-
imation in (5) is a linearization.] The coefficient estimates
can be protected against the effects of extreme irregulars
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by means of a procedure like the one discussed in Section
3 and Appendix C.

Finally, X-12-ARIMA allows user-defined regressors in
the irregulars regression. These regressors may need to be
deseasonalized and detrended before being input to the pro-
gram.

1.4.3 Model the Irregulars or Model the Original Se-
ries? Instead of modeling the irregulars series, one can
model the original series, as we discuss in Section 3. This
has important advantages for making statistical inferences
about calendar and other regression effects. Implicit in the
use of OLS regressions and the associated F' tests of sig-
nificance is the assumption that the irregular component is
a series of constant-variance, independent variates. Rather
frequently (with 14 of 71 series in the trading-day model-
ing study described by Chen and Findley 1993, 1996a), the
regression F statistic from a regression model of the irregu-
lars has a spuriously significant value in tests of the null hy-
pothesis of no effect even at the .01 level of significance—
an indication that this implicit assumption is often not ad-
equately satisfied. In fact, some autocorrelation is typically
found in the irregulars: The sample autocorrelations be-
tween irregulars a year apart are almost always negative
and larger in magnitude than all other sample autocorrela-
tions (often being close to —.2). Moreover, it is clear from
the trend filter gain functions that X-11’s relatively short-
term trends cannot fully capture long-term correlation in
the data if it exists. Additionally, there is heteroscedasticity
near the ends of the irregulars series because of the time-
varying asymmetric filters used to obtain the decomposition
near the ends of the series being adjusted. To detect a spuri-
ously significant F' statistic, the spectrum and sliding-spans
diagnostics discussed in Section 2 can be used, as can the
regARIMA model diagnostics that will be discussed in Sec-
tion 3.2.

One might expect that estimates of calendar and other
regression effects would also be better when these come
from regARIMA models, both because these models ac-
count for the correlation structure of the observed series
and because they model the effects directly rather than as a
residual component identified after seasonal and trend es-
timation. We have not found this to be universally true,
however. In Section 4.3 we shall show how out-of-sample
forecasting performance can be used to demonstrate the su-
periority, inferiority, or rough equivalence of calendar-effect
estimates from regARIMA models versus those from OLS
regression models of a preliminary irregular component.

The better inference properties and the typically equiv-
alent or better performance of estimates from regARIMA
models lead us usually to prefer using a regARIMA model
of the original series to estimate regression effects. There
are some series that cannot be modeled well by regARIMA
models, however, due, for example, to frequent changes in
variability or to erratic trend movements over the course of
the series that require more sophisticated detrending pro-
cedures than differencing. Finally, many people worldwide
who are responsible for producing seasonal adjustments do
not have the necessary training to develop regARIMA mod-
els for their series.



Downloaded by [Texas A & M International University] at 23:17 04 October 2014

Findley, Monsell, Bell, Otto, and Chen: New Capabilities and Methods of X-12-ARIMA 135

2. NEW DIAGNOSTICS

X-12-ARIMA provides the diagnostic tables of X-11
and X-11-ARIMA, as well as the M1-M11 quality-control
statistics of X-11-ARIMA. It also has important additional
diagnostics, including spectrum estimates for the presence
of seasonal and trading-day effects {see Sec. 2.1) and the
sliding spans and revisions history diagnostics of the stabil-
ity of seasonal adjustments (see Sec. 2.2). The sliding spans
and revisions histories are directly interpretable, whereas
MI1-M11 are indirect measures, in some cases very indi-
rect, of data features known to be troublesome for the X-11
methodology. Most of the M1-M11 statistics can be calcu-
lated for short time series, however, something impossible
for the current stability diagnostics of X-12-ARIMA.

2.1 Using Spectrum Estimates to Detect Seasonal
Effects and Flow Trading-Day Effects

Sensitive diagnostics are sometimes needed to determine
if seasonal or trading-day effects are present in a series. This
is especially true for detecting residual effects in a series
that has already been adjusted for seasonal and trading-day
effects. For a series adjusted by direct application of X-12-
ARIMA, residual seasonality can result from inadequacies
in the adjustment procedures chosen or from difficult-to-
estimate seasonal effects in the series—for example, highly
variable effects. With an indirectly adjusted aggregate se-
ries, whose adjustment is obtained from its component se-
ries (say a national series that is a sum of component re-
gional series), it can happen that some of the component
series are not adjusted for one or both of seasonal and trad-
ing effects, either because the effects are not detectable or
because they are not reliably estimable in these components.
This can leave residual effects.

As seasonal and calendar effects are approximately peri-
odic, it is natural to use spectrum estimation to detect their
presence. The period that defines seasonal effects is one
year. Thus, in monthly series, seasonal effects can be dis-
covered through the existence of prominent spectrum peaks
at any of the frequencies k/12 cycles per month, 1 < k£ < 6.
In quarterly series the relevant frequencies are 1/4 and 1/2
cycles per quarter.

Monthly trading-day effects have a period of 28 years
(336 months). This long period leads to an overabundance
of frequencies potentially associated with trading-day ef-
feet peaks (see McNulty and Huffman 1989). Cleveland
and Devlin (1982) demonstrated, however, for flow series
that the most sensitive frequencies will typically be .348
cycles/month and .432 cycles/month. The empirical expe-
rience of W. P. Cleveland at the Federal Reserve Board
showed that peaks at the biweekly-period alias-frequency
.304 cycles/month (.304 = 1 — 2 X .348) are also useful
indicators of a trading-day effect.

Whenever seasonal adjustment is done (with or without
trading-day adjustment), X-12-ARIMA automatically esti-
mates two spectra, (1) the spectrum of the month-to-month
differences of the adjusted series modified for extreme val-
ues from X-11 output table E2 (or of the first differences
of logarithms of this series with a multiplicative adjust-

ment) and (2) the spectrum of the final irregular component
adjusted for extreme values, from output table E3. First-
differencing is a crude detrending procedure that is usually
adequate to enable the spectrum estimate to reveal signif-
icant seasonal and trading-day effects. The program com-
pares the spectral amplitude at the seasonal and trading-
day frequencies noted previously with the amplitudes at the
next lower and higher frequencies plotted. If these neigh-
boring amplitudes are smaller by a margin that depends on
the range of all spectrum amplitudes, then plots of the es-
timated spectra are automatically printed, together with a
warning message that gives the number of “visually signif-
icant” peaks found at seasonal or trading-day frequencies.

The best known spectrum estimator for detecting nonran-
dom periodic components is the periodogram [see Priestley
(1981, pp. 390-415) for a very informative discussion]. For
aseries x, 1 <t < N, the periodogram, in decibel units, has
the formula 101og;4((2/N)| o, 2e272[2).0 < A < 5.
[At the frequencies A = 27n/N,1 < n < [N/2], letting
A, and B, denote the least squares estimates of the coef-
ficients of the regression of x; on Acos2nAt + Bsin 2wt
the periodogram is equal to 10log,{(IN/2)(A3 + B3)}; see
Priestley (1981, p. 395).] The periodogram is one of the two
spectrum estimators in X-12-ARIMA, the other being the
autoregressive spectrum estimator, which in decibel units
has the form

0.2

101log;q {27r|1 — ij e } , 0< A< 5. (D

J

The coefficients c; are those of the least squares regression
of o, —Zonm ;—%1<j<mwithz=N"N z,
and o2, is the sample variance of the resulting regression
residuals. For a discussion of this estimator, see Priest-
ley (1981, pp. 600-612). The default spectrum estimator
in X-12-ARIMA usually uses m = 30, as in the BAY-
SEA seasonal-adjustment program (Akaike 1980; Akaike
and Ishiguro 1983). Although this estimate is somewhat
less sensitive to the presence of periodic components than
the periodogram, its graphs are much more stable under
slight changes in the data window used or in the set of
frequencies chosen for its evaluation. The radian frequen-
cies used in the spectrum graphs produced by X-12-ARIMA
are A = k/120,0 < k < 60, except that the three trading-
day frequencies .304, .348, and .432, whose spectral ampli-
tudes are plotted with a 7', are used in place of their closest
neighbors of the form %/120. The amplitudes at the sea-
sonal frequencies 1/12,2/12,...,6/12 are plotted with an
S. Examples will be given shortly.

The spectrum of any span of data within the series can
be estimated. The default span for the automatically caicu-
lated spectrum estimates is the most recent eight years of
data if the series is at least this long. Data-users are nor-
mally most concerned about recent data, and eight years of
monthly data are usually enough to achieve reliable esti-
mates of trading-day effects. When the pattern of the ef-
fects changes substantially over the course of the series,
diagnostics calculated from the full series can lead to deci-
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sions that are inappropriate for the recent data, as we now
demonstrate.

Figure 5 shows X-12-ARIMA’s output spectrum plots of
(7) from the irregular component of the construction series
of single- and multi-unit housing starts (January 1964 to
December 1982) from the Midwest region of the United
States, after seasonal adjustment but without trading-day
adjustment. The spectrum of Figure 5(a) is from the full ir-
regulars series. It shows a strong peak at the main trading-
day frequency .348 and a very slight peak at the frequency
.304. The spectrum of Figure 5(b), which is calculated from
the last eight years of the irregulars series, has no trading-
day peaks. The conclusion is that there is not a significant
trading-day effect late in this series. This conclusion was
confirmed by model-selection diagnostics (Chen and Find-
ley 1996a).

In a purely diagnostic mode, X-12-ARIMA can calcu-
late a spectrum estimate of the first differences of an input
time series (or of its logarithms) and print a spectrum plot
without doing any further processing. This feature was de-
signed for use at the Census Bureau in a once-a-year inspec-
tion looking for residual seasonal and trading-day effects in
major aggregate series that are compiled from component
series, some of which might not be seasonally adjusted.

(a) From Full Series

Journal of Business & Economic Statistics, April 1998

2.2 Diagnostics for the Stability of the Seasonal
Adjustments and Trends

A seasonal (and trading-day and holiday) adjustment that
leaves detectable residual seasonal and calendar effects in
the adjusted series is usually regarded as unsatisfactory.
Even if no residual effects are detected, the adjustment
will be unsatisfactory if the adjusted values (or important
derivative statistics, such as the percent changes from one
month to the next) undergo large revisions when they are
recalculated as future time series values become available.
Frequent, substantial revisions cause data users to lose con-
fidence in the usefulness of adjusted data. Indeed, such in-
stabilities in the adjustments should cause the producers
of adjustments to question their meaning. Unstable adjust-
ments can be the unavoidable result of the presence of
highly variable seasonal or trend movements in the series
being adjusted. They can, however, also be due to inappro-
priate option specification in the software used to produce
the adjustments, in which case they are avoidable.

2.2.1 Sliding Spans. X-12-ARIMA includes two types
of stability diagnostics, sliding spans and revision histories.
The sliding-spans diagnostics display, and provide summary
statistics for, the different outcomes obtained by running

(b) From Last Eight Years
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Figure 5. Graphs of the AR Spectrum (7) of the Irregulars of North Central Housing Starts From (a) the Full Series and (b) Its Last Eight
Years. The dominant peak at the second trading-day frequency in (a) does not appear in (b). Hypothesis testing confirms the lack of a significant

trading-day effect in the last eight years.
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the program on up to four overlapping subspans of the se-
ries. For each month that is common to at least two of the
subspans, these diagnostics analyze the difference between
the largest and smallest adjustments of the month’s datum
obtained from the different spans. They also analyze the
largest and smallest estimates of month-to-month changes
and of other statistics of interest. Several uses of these diag-
nostics were demonstrated by Findley et al. (1990). It was
shown how they improve on, or complement in important
ways, earlier diagnostics for (a) determining if a series is
being adjusted adequately, (b) deciding between direct and
indirect adjustments of an aggregate series, and (c) con-
firming option choices such as the length chosen for the
seasonal filter or showing that other option choices must
be tried. We refer the reader to this article for examples of
these uses and others. Battipaglia and Focarelli (1995) per-
formed simulation experiments and concluded that stability
statistics from sliding spans were significantly more corre-
lated with adjustment accuracy than the @ statistic of X-
11-ARIMA, which is a weighted average of the M1-M11
statistics. Other comparisons between sliding-spans diag-
nostics and @ were given by Findley and Monsell (1986)
and Findley et al. (1990).

2.2.2 Revision Histories. The second type of stability
diagnostic in X-12-ARIMA considers the revisions asso-
ciated with continuous seasonal adjustment over a period
of years. The basic revision calculated by the program is
the difference between the earliest adjustment of a month’s
datum obtained when that month is the final month in the
series and a later adjustment based on all future data avail-
able at the time of the diagnostic analysis. Similar revisions
are obtained for month-to-month changes, trend estimates,
and trend changes. Sets of these revisions, calculated over
a consecutive set of time points within the series, are called
revisions histories. We will show how they can suggest the
number of years of forecasts to use in forecast extension
of the series and how they indicate whether the (final) Hen-
derson trend estimates (from output table D12) are stable
enough to serve as an alternative to the seasonal adjust-
ments. (The Australian Bureau of Statistics prefers to pub-
lish these trend estimates instead of seasonal adjustments
because the trend estimates have fewer changes of direc-
tion and therefore seem more interpretable to data users,
especially when the seasonal adjustments are quite volatile.
For the same reason, some other statistical agencies are also
considering publishing the Henderson trends.)

To describe the variety of revisions that can be obtained,
we introduce precise notation. Suppose a set of options has
been chosen for the application of X-12-ARIMA to the un-
adjusted time series Y;,1 < ¢ < N. For any of these months
t, and any integer v in the interval ¢ < u < N, let A4y, de-
note the seasonally adjusted value for time ¢ obtained with
these options when only the data Y;,1 < ¢ < u, are used in
their calculation (Y, 41,..., Yy are withheld). For given ¢,
as u increases these adjustments converge to a final adjusted
value. When the 3 x m seasonal filter is used, convergence
is usually effectively reached in about 1 + m/2 years. The
largest revisions tend to occur when w is the same calendar

month as ¢, specifically u =t +12,¢+24,..., and the next
to largest changes a month later, v = ¢+ 1,t+13,t+25,. . ..
(In the additive decomposition case, the largest weights in
the seasonal-adjustment filter combining all of the seasonal-
adjustment calculations are at lags 1,12, 13,24, 25, ....) The
adjustment A,|; obtained from data through time ¢ is called
the concurrent adjustment. It is usually the first adjustment
obtained for month ¢. We call A,y the most recent ad-
justment. In the case of a multiplicative decomposition, the
revision from the concurrent to the most recent adjustment
for month ¢ is calculated by the program as a percentage of
the concurrent adjustment,

At]N — Ay

RA, =100 x
t|N At|t

For given Ny and N; with Ny < N;, the sequence
R;“‘N, Ny < t < Ny, is called a revision history of the sea-
sonal adjustments from time Ny to time N;. We suggest
that Ny be at least as large as the effective length of the
seasonal filter used, 12(2 +m). It should definitely be large
enough for reliable estimation of any trading-day or holiday
adjustments being performed.
Period-to-period percent changes,

Atlu - At—l[u

A% Ay, =100 x -

are often as important as the seasonal adjustments. X-12-
ARIMA can produce revision histories for them:

%
Ryt = A%Ayn — A% Ay, No<t< Ny

The program also calculates the analogous quantities for
final Henderson trends T, and for their period-to-period
percent changes A%Tﬂu. These histories are denoted by
RtT[N and Rﬁ;;T,NO <t < Ni. [Note: A slightly larger Ny
is required for the trend-revision histories because the ef-
fective length of the trend filters is one or two years longer
than that of the adjustment filters; see Bell and Monsell
(1992).]

2.2.3 Two Applications of Revision Histories. We now
present an example demonstrating how these histories can
help with decisions about what kind of forecast extension
to use, if any, and whether the Henderson trend is a prac-
tical alternative to the seasonal adjustments. To illustrate
a variety of issues with a single example, we use a se-
ries for which the final Henderson trend estimates and sea-
sonal adjustments have different relative stability proper-
ties, depending on which feature of the data is of interest.
The series is construction starts of single- and multi-unit
dwellings (“housing starts”) in the Southern region of the
United States beginning in January 1962 and ending in Au-
gust of 1993. It is adjusted for trading-day effects as well
as seasonal effects. For the latter, the X-11 default options
are used. The regARIMA model used for forecast exten-
sion includes a regression variable to make an adjustment
for an additive outlier (see Sec. 3) in December 1989. Fig-
ure 6 is a graph of the series from January 1981, along with
the seasonally adjusted series and final Henderson trend ob-



Downloaded by [Texas A & M International University] at 23:17 04 October 2014

138

8
g
@
2
5 3
o S
£ 2
3
T
(=)
Q
S -
<
T T T T T T T T T T T T T T
1981 1983 1985 1987 1989 1991 1993
Figure 6. Southern Housing Starts With Seasonal Adjustment and
Associated Trend: — , Original; ———, SA; —- —, Trend.

tained using 42-month forecast extension. The trend is sig-
nificantly smoother and more appealing to the eye than the
seasonal adjustment. The revisions histories begin in Jan-
uary of 1981 and end in December of 1989. This ending
date, three and a half years before the most recent datum,
was chosen so that all revisions would be final or close-to-
final revisions. Thus, they are revisions of similar type, so
it is reasonable to consider their average magnitudes.

We start by examining the effect of the length of the fore-
cast extension on the magnitudes of |R/} | and |Rj) | The
cases considered are no forecast extension, 12-month fore-
cast extension, and 42-month forecast extension, the last
length being the effective half-length of the 3 x 5 seasonal
filter used. Bobbitt and Otto (1990) found that the use of
such “full forecast extension” can result in smaller average
revisions between concurrent and final seasonal adjustments
than shorter forecast extension. Table 1 shows that the av-
erage magnitudes of the R;‘;‘N of the housing starts series,
denoted avg}R;‘l‘Nl, follow this pattern. The table also in-
cludes counts of large revisions, which we have defined to
be revisions of magnitude greater than 4% (this is more than
twice the average magnitude of the seasonal-adjustment re-
visions).

For the data user interested only in the levels of the sea-
sonally adjusted series, these results suggest that the adjust-
ments obtained with the aid of a 42-month forecast exten-
sion are preferable to the other adjustments considered and
to the Henderson trends.

We now consider month-to-month changes. The graphs
of A%At;t and A%Atl N are given in (a) of Figure 7 and
the graphs of AT}, and A”Tyy in (b). (The quantities
graphed were obtained using 42-month forecast extension.)
The different scales in Figure 7, (a) and (b), make clear
that the month-to-month changes in trend are often much
smaller. The revisions, whose magnitudes are indicated by
the lengths of the vertical lines connecting the concurrent
and most recent estimates, are also smaller for the month-
to-month changes in trend. For the different forecast leads
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Table 1. Average Absolute Percent Revisions and Numbers of Exireme
Revisions Over (1/1981-12/1989) for Seasonal Adjustments
and Henderson Trends of Southern Housing Starts (1/1962-8/1993)
Obtained Using Different Numbers of Forecasts

No. mg‘,\,! No. |R]|

No. forecasts avglR{?N: avg|Rt7"Nf > 4.0% > 4.0%
0 2.1 3.8 17 33
12 1.8 3.1 10 33
42 1.5 3.0 2 26

0, 12, 42, the values of avg!RﬁZ}A] and avg|Rﬁ;§T} are 2.5,
2.3,2.2 and 1.7, 1.4, 1.4, respectively.

There is only one visible way in which the revisions of
AT, are less appealing than the revisions of A% A,
About twice as often for A%Ttlt, the most recent estimate
has a different sign from that of the initial estimate. Such
revisions, which change month-to-month increases to de-
creases or decreases to increases, are irritating for many
data users. In Figure 7, the vertical connecting lines cross
the horizontal axis at level O when there is a change in sign,
making such changes easy to see. Both the number of sign
changes and the sizes of the revisions are much smaller
for the trends obtained after a 3-month wait, 7}, 3: Com-
pare Figure 8, which graphs the revisions from A%Ttms to

A%Ttl ~» with Figure 7(b). (The seasonally adjusted month-

(a) Seasonal Adjustment Changes from the Previous Month.
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(b) Trend Changes from the Previous Month.
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Figure 7. Concurrent (-) and Most Recent (¢) Estimates of Percent
Changes From the Previous Month in the Seasonal Adjustment (a) and
Trend (b) of Southern Housing Starts. The connecting vertical lines show
the size of each revision. [Note that the scales of (a) and (b) are different.]
When these lines cross the level zero axis, the revision of the concurrent
value includes a change of sign, an unfavorable situation.
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Figure 8. Three-Month-Lagged (-) and Most Recent (¢) Estimates
of Percent Changes from the Previous Month in the Trend. Comparison
with Figure 7(b) shows that the trend-change estimates calculated three
months after the concurrent estimates have much smaller revisions than
the latter and fewer changes of sign after revision.

to-month changes obtained with a three-month delay do not
have improved revisions and are not graphed.)

The SABL seasonal-adjustment program of Cleveland,
Devlin, Schapira, and Terpenning (1981) was the first to
calculate revisions series. SABL produces a history of the
differences between the seasonal adjustments obtained us-
ing seasonal factors projected a calendar year in advance
and the concurrent seasonal adjustments. [Projected fac-
tor adjustments are much less used now than when SABL
was created, having been displaced by concurrent adjust-
ments because the latter generally have smaller revisions;
see Dagum (1987) for a survey of the relevant literature.
X-12-ARIMA can also calculate revisions of projected ad-
justment factors to most recent adjustment factors so that
users can compare these with the revisions of concurrent
factors.]

3. REGARIMA MODELING AND MODEL SELECTION

We now describe the time series modeling and model-
selection methodologies of X-12-ARIMA, beginning in
Section 3.1 with an overview of regARIMA models and the
regressors for them that are included in X-12-ARIMA. Sec-
tion 3.2 indicates how the program uses regARIMA models
to identify automatically AO’s and LS’s. Section 3.3 deals
with model selection. First, log-likelihood-based model-
selection criteria are presented in Section 3.3.1, along with
the way we use one such criterion, the Akaike informa-
tion criterion (AIC), for automatically deciding whether or
not a trading-day effect is present. Section 3.3.2 shows how
the program’s ability to “recreate history” is exploited for
model selection, especially by withholding data, forecast-
ing these data, and analyzing the resulting out-of-sample
forecast errors.

3.1 Overview of regARIMA Modeling in X-12-ARIMA

Given a time series Y; to be modeled, it is often necessary
to take a nonlinear transformation of the series, y; = f(Y3),
to obtain a series that can be adequately fit by a regARIMA
model. For example, if Y; is a positive-valued series with
seasonal movements proportional to the level of the series,

one would usually take logarithms or, more generally,
w=tog (3] = o ¥i ~ og, ®)
t

where d; is some appropriate sequence of divisors. Possible
divisors include (a) deseasonalized and detrended length-of-
month factors N;/N;* from (6), (b) combined trading-day
and Easter-holiday effect factors obtained from a regression
model of the irregular component of Y; (obtained from a
preliminary run), and (c) user-defined adjustment factors
that estimate the effects of unusual economic events. X-12-
ARIMA can calculate the transformed series (8) for choices
(a) and (b) via user-specified options and for choice (c) by
reading in the divisors from a user-specified data file.

The built-in transformations include a one-parameter
family of power transformations (modified “Box—Cox”
transformations),

Y:/ds, A=1
y ™M = N (/) —1/A, A#0,1
log(Yy/dy), A=0, (9

which changes smoothly in A and preserves positivity if
Y:/d; > 1.0. Although the program permits any value of
A to be used for the purpose of obtaining forecast and
backcast extensions, to get regression preadjustments for
a seasonal-adjustment decomposition in X-12-ARIMA, A
must be 0 or 1. These are the only values of A for which it
is possible to isolate the effect on Y; of regression compo-
nents of y;. .

Let B denote the backshift operator, By, = yi—1.
X-12-ARIMA can estimate regARIMA models of order
(p,d,q)(P, D, Q)s for y,. These are models of the form

¢p(B)®p(B°)(1 - B)* (1~ B*)" <yt - Zﬂwm)

= 0,(B)B¢g(B*%)a;, (10)

where s is the length of the seasonal period, s = 4 or 12.
The polynomials ¢,(2),®p(z),0,(2),0¢(z) with degrees
p, P, q, and @, respectively, have constant terms equal to 1.
For example, if p > 1, we have ¢ (2) = 1—¢1z2—- - — Pp2P.
These polynomials are constrained so that the zeros of ,(z)
and B¢(z) have magnitudes greater than or equal to 1, and
(in the default estimation procedure) so that the zeros of
®p(2) and ®p(z) have magnitudes greater than 1. Because
a; is assumed to be a sequence of independent variables
with mean 0 and constant variance o2, it follows from these
constraints that wy = (1—B)H(1—B*)P(y, —37_, Bizs) is
a covariance stationary time series that satisfies the differ-
ence equation ¢,(B)®p(B®)w; = 0,(B)O¢(B*)a;. Conse-
quently, we can reexpress the model (10) for y; as

(1= B)(1-B*)"y,

= > B{(1 - B) (1 - B) Pz} +we. (11)
i=1
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This is a regression model with stationary autoregressive
moving average (ARMA) errors w; for suitably differenced
y:. Its regressors result from applying the same differenc-
ing operations to the x;;. The model (11), together with an
assumption that the innovations a; in the model for w; are
iid N(0, o2), determine the likelihood function that is maxi-
mized to estimate the regression coefficients 3;, o2, and the
coefficients of ¢,(B), ®p(B*),0,(B), and O¢(B*). The de-
fault likelihood in X-12-ARIMA is the fully exact Gaussian
likelihood. To help circumvent convergence problems in the
numerical maximization (which occur rarely), the approxi-
mating conditional Gaussian likelihood defined by Box and
Jenkins (1976) can optionally be used instead of the exact
likelihood. There is also a third option in which the like-
lihood is conditional for the autoregressive parameters and
exact for the moving average parameters (see Hillmer and
Tiao 1979). (These two alternative likelihoods do not con-
strain the zeros of autoregressive polynomials.)

In model estimation, any of the ARMA coefficients can
be held at fixed values, such as 0. The program produces
asymptotic standards errors, correlations, and ¢ statistics for
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the estimated coefficients, as well as confidence intervals for
forecasts. With the exception of the confidence intervals,
these statistics remain valid with non-Gaussian data if the
model form is correctly specified; see, for example, Hosoya
and Taniguchi (1982).

The set of built-in regressors for monthly series is listed
in Table 2. Applications using some of them are given in
Section 4. As discussed in Section 3.2, the program has
options to add automatically both AO and LS regressors to
the set of regression variables in the model. In this way, the
regARIMA coefficient estimates and forecasts can be made
robust to some kinds of atypical data values and to sudden
changes in the level of the series. The user can optionally
choose to have such automatically identified outliers and
level shifts removed from the data, together with specified
other regression effects, before the X-11 procedure outlined
in Appendix A is applied. Through such preadjustments, the
seasonal factors that are used to adjust the original data can
be shielded from distortion.

The extreme value treatments within the X-11-ARIMA
procedure, which were described fully by Dagum (1980)

Table 2. Predefined Regression Variables in X-12-ARIMA

Regression effect

Variable definition(s)

Trend constant

1 in January

(1—=B)=9(1 — BS)=P(t > 1), where I(t > 1) = {

1 fort>1
0 fort<1

1 in November

2Fixed seasonal Myt = —1 in December, ... , M1 = —1 in December

0 otherwise

aFixed seasonal
Trading day
(monthly or quarterly flow)
2l ength-of-month
(monthly flow)
Leap year
(monthly flow)

0 otherwise

sin(w;t), cos(w;jt), where w; = 27j/12,1 < j < 6 (drop sin(wst) = 0)
Ti¢ = (no. of Mondays) — (no. of Sundays), ..., Ts; = (no. of Saturdays) — (no. of Sundays)

N; — N, where N; = length of month ¢t [in days] and N = 30.4375 [average length of month]

Ny — Nf*’ where Nt* = (Nt + Ni—q2 + Ng,24 + N:-3e)/4
(Note: This variable is 0 except in February.)

Stock trading day 1 @" day of month t is a Monday 1 W" day of month ¢ is a Saturday
(monthly stock) Tit =< —1 " dayof month tis a Sunday, .- Ts,t = { —1 " day of month t is a Sunday

0 otherwise

0 otherwise,

where @ is the smaller of w and the length of month f. For end-of-month stock series, set w to 31.

bEaster holiday
(monthly or quarterly flow)
February only for w > 22.]

E(w, t) = 1/w x (no. of the w days before Easter falling in month (or quarter) f)
[Note: This variable is 0 except in February, March, and April (or first and second quarter). It is nonzero in

P abor Day
(monthly flow)

bThanksgiving
(monthly flow)

L(w, t) = 1/w x (no. of the w days before Labor Day falling in month ¢)
[Note: This variable is 0 except in August and September.]

TC(w, t) = proportion of days from w days after Thanksgiving through December 24 that fall in month ¢

(negative values of w indicate days before Thanksgiving)

[Note: This variable is 0 except in November and December.]

1 fort =t
Additive outlier at f AOl®) = { 0

0 fort#fy
. (to) _ —1 fort<ty
Level shift at to LS;” = { 0 fort>t
—1 fort <ty
Temporary ramp, fp to t RP(rtO'r‘) =< (t—ty)/(ti —f)—1 forfg<t<t
0 fort > t;

4 The variables shown are for monthly series. Corresponding variables_ are available for qtianerly series.
® The actual variable used for monthly Easter effects is E(w, t) — E(w, t), where the E(w, t) are the “long-run” (computed over 38,000 years) monthly means of E(w, t) (nonzero only for
February, March, and April). Analogous deseasonalized variables are used for Labor Day and Thanksgiving effects and for quarterly Easter effects.
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and nicely flowcharted by Hylleberg (1986, p. 91), pro-
vide some protection against AO’s for the seasonal factors.
The trend filters applied in the course of obtaining the sea-
sonal factors cannot follow sudden, large LS’s, however.
Thus, estimation of LS’s together with preadjustment for
them, as illustrated in Figure 2, is an especially important
capability of X-12-ARIMA. Other approaches to treating
sudden changes in level have been considered. Bruce and
Jurke (1996) compared X-12-ARIMA seasonal adjustments
of series having preadjustments for LS’s and AO’s from reg-
ARIMA models with seasonal adjustments obtained from
a state-space model that uses Gaussian-mixture state- and
observation-noise models to deal with disruptions to the
level of the series. They concluded that the regARIMA ap-
proach succeeds more broadly.

3.2 Automatic Outlier Treatment

The automatic methods for identifying AO’s and LS out-
liers are stepwise regression procedures based on work of
Chang and Tiao (1983) (see also Bell 1983; Burman 1983;
Chang, Tiao, and Chen 1988). In the default procedure,
whose steps are listed in Appendix C, appropriate AO and
LS regressors are fit at (almost) all time points of the series
(or of a chosen subspan), and their corresponding ¢ statistics
are compared against specified critical values. The default
critical value is 3.8 for both regressor types. Such large
critical values are appropriate because of the large num-
ber of regressors to which individual significance tests are
applied. Automatic outlier identification is, in this respect,
different from the model-selection problem discussed in the
next subsection, where less stringent criteria are often used
to include other regressors.

3.2.1 Instabilities of Outlier Identification. The set of
automatically identified outliers can change if the regressor
set or ARIMA model type is changed. For example, in se-
ries with a strong date-of-Easter effect, Marches and Aprils
are often identified as outliers if no regressors for this ef-
fect are included in the model but not if such regressors are
used. A second source of instability in the composition of
the set of observations defined as AO’s or LS outliers is the
use of stepwise regression procedures based on specified
critical values. Regressors with ¢-statistic values just below
the critical values can have their ¢ statistics increase above
the critical values as new data are added to the series over
time. Conversely, regressors can drop out of the set of iden-
tified outliers as new data are added. The printed output of
X-12-ARIMA’s automatic-outlier-identification option lists
months whose AO or LS regressors are close to the criti-
cal values. This is done to enable the user to consider in
advance whether to include such regressors in subsequent
runs of the program. Instability is a problem with most out-
lier detection and automatic model-selection schemes. In
the context of regressor selection for independent observa-
tions, Breiman (1997) proposed some interesting, although
computationally expensive, data-perturbation approaches to
achieve more stable selections.

3.3 Model Identification and Selection
X-12-ARIMA has an automatic ARIMA modeling option

that is patterned after the procedure of X-11-ARIMA/88.
Under this option, the program examines the fit of reg-
ARIMA models whose ARIMA structures are those with
a specified set of orders (p,d, ¢)(P, D, Q)s. The default set
consists of the five models with nonseasonal orders (0 1 1),
(012),210),(022),and (21 2), and always the same
seasonal order, (0 1 1),, exactly as in X-11-ARIMA/88.
In X-12-ARIMA, the user can specify an alternative set of
models for consideration. Moreover, the user can specify
regression variables to be included in the model and can
use built-in criteria to decide if trading-day, AO, and LS re-
gressors should be included with any specified regressors. A
fitted model whose estimated mean absolute percent fore-
cast error statistic and Box—Ljung portmanteau statistic are
below certain thresholds is considered an acceptable model.

For the situation in which none of the automatically
tested models is adequate, or where the user wishes to iden-
tify or check a model, X-12-ARIMA has options to produce
standard modeling diagnostics. For model identification, the
program provides the sample autocorrelations and partial
autocorrelations of the residuals obtained by doing OLS
regression in (11),

(1-B)4(1 - B*) Py — Z GOYS{(1 — BYH(1 — B*)Pay).
i=1

For model checking, it produces the sample autocorrela-
tions and partial autocorrelations of the residuals from a fit-
ted regARIMA model [estimates of the a; in (11)], together
with associated portmanteau statistics and histograms of
residuals (see Box and Jenkins 1976; Abraham and Ledolter
1983; Vandaele 1983; Bell 1996).

3.3.1 Log-Likelihoods, AIC, and Automatic Trading-
Day-Effect Modeling. Suppose that there are competing
regARIMA models whose diagnostics seem adequate and
that these models differ in the choice of the ARMA model
for w, in (11), or in the choice of regressors other than AO
and LS regressors, or in the choice of transformations f;(Y:)
of ¥;. When the parameters in these models have been esti-
mated by maximizing the exact Gaussian likelihoods, then
X-11-ARIMA provides several log-likelihood-based model-
selection criteria that can be used to select one of the mod-
els. Let the logarithm of the maximized exact likelihood of
a covariance stationary time series model for (1 — B)4(1 —
B5P f,(Y,),d+sD+1 <t < N, be denoted by i£+sD+1,N'
This can be converted into the logarithm of a likelihood
for Yoisps1,-- s Y conditional on Y7, ..., Y, sp, denoted
by LYy, ..., Yarsp+1|Yarsp, - .-, Y1), by adding the log
of the Jacobian determinant of the transformation y, =
fi(Yy),d+sD+1<t<N,

L(Yyrspt1>- - YNIY1, ..., YairsD)

N
; dfi(¥r)
= L£+3D+1,N+ E IOg‘_dYtL - (12)

t=d+sD+1

When d > 0 or D > 0, we are, in effect, treating the starting
values y1,...,Yq+sp as fixed.
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Let m denote the number of free parameters estimated
in the model. If there are no coefficient constraints in (11),
then m =r +p-+q+ P + Q + 1, counting the coefficients
and the variance of a;. The AIC statistic for this model is
defined by

AICN 445D

= —ZJZ(Yd+sD+1, S ,YN|Y1, e aYd—Q-sD) +2m. (13)

Given several competing models with the same d + sD,
Akaike’s minimum AIC criterion states that the model with
smallest AIC is the best of the models for Y;. [See Akaike
(1973), Findley (1985), and Brockwell and Davis (1987)
for technical details and Findley and Parzen (1995) for
historical background.] X-12-ARIMA also calculates the
small-sample version of AIC derived by Hurvich and Tsai
(1989), the Schwarz Bayesian information criterion statistic
(Schwarz 1978), and the Hannan and Quinn statistic (Han-
nan and Quinn 1979). These differ from AIC in the replace-
ment of the term 2m in (13) by 2m/{1— (m+1)/(N —d—
sD)}, mlog(N —d— sD), and 2mloglog(N — d — sD), re-
spectively. These replacements are usually larger than 2m.
Therefore these other criteria are less tolerant than AIC of
models with more coefficients. (For these criteria too, the
smallest value of the statistic over a set of competing mod-
els is used to determine a preferred model.)

Comparing different transformations. Rather frequently,
it is necessary to compare regARIMA models whose data
transformations f;(Y;) differ. The most common situation
is the one in which two different divisors d; are used in the
log transform (8), say d; = N;/N; and d; = 1 as in the
next subsection, or “subjective” and “objective” choices of
d; as in Section 4.4. The next most frequent situation is
the one in which different choices of A are considered in
(9), usually A = 0 and A = 1. The choice A = 0 suggests
that the seasonal-adjustment decomposition should be mul-
tiplicative, A = 1 that it should be additive.

To help decide between two transformations, either the
out-of-sample forecast diagnostics described in Subsection
3.2.2 or one of the log-likelihood-based criteria, such as
AIC, can be used. In the case of choosing a power trans-
formation (9) with unrestricted )\ when the same ARIMA
model type is used with the different A, the numbers of
estimated parameters do not change, so the latter criteria
all prefer whichever ) yields a larger log-likelihood. In this
situation, one can examine an interval of values and to iden-
tify the )\ maximizing the log-likelihoods (12) (see Ansley,
Spivey, and Wrobleski 1977). Although this procedure ap-
pears to yield reasonable results (Shulman and McKenzie
1988), the asymptotic distribution theory on which it rests
has not been verified and, if valid, may require subtle argu-
ments for its proof when d > 0 or D > 0.

Deciding whether to adjust for trading-day effects. We
now describe X-12-ARIMA’s option for automatically de-
termining if trading-day regressors should be included in
the model (11) after the rest of the model has been specified
(meaning f;,d, D, and ARMA model type for w;, and any
other regressors). The models with and without trading-day
regressors are estimated. In the default case for multiplica-
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tively decomposed flow series, the model with trading-day
regressors also uses the Leap Year effect preadjustments
d; = Ny/N; [see (14)], but the model without these regres-
sors does not. The AIC’s for the two models are compared,
and the model with the smaller AIC is chosen (for fore-
cast extension and for estimating any requested regression
preadjustments).

As we indicated in Section 1.4.1 after (6), the default
regARIMA trading-day model for a multiplicative decom-
position of a seasonal monthly series Y; has the form

(1= By~ £2)° iog (T

t

6 T
— > " Bi(Dit — Dry) — Zﬁiiﬂit} =w. (14)
=1

=8

If there are only trading-day regressors in the model, the
second sum is omitted. With #7 = — Z?=1 (;, the trading-
day factors obtained from (14) have the form

N 6
i eXpZﬁi(Dit —Dy) =
=1

Ny
t || Bi(Dit—4) (15)
& .
t t* i=1

N,

The alternative model with no trading-day effects is

(1-B)¥1-B®P {10th - Zﬁiwit} =w;. (16)
i=8
Thus, f(Y;) = logY; is used instead of f;(Y:) =
log(N;Y;/N;) in (14).

Our experience is that comparing the AIC’s of (14) and
(16) to decide if a trading-day effect is present is substan-
tially more reliable than X-11’s F' test of the hypothesis
By =+ = B = 01in (3). As we mentioned in the first para-
graph of Section 1.4.3, in the empirical study summarized
by Chen and Findley (1996a), this F' test falsely indicated
significant trading-day effects in 14 of 71 series. The auto-
matic procedure just described classified these 14 series as
not having estimable trading-day effects, in agreement with
the forecast comparison procedure described next.

3.3.2 Historical Output for Comparing Models: Out-of-
Sample Forecasting Performance, AIC Histories. We re-
turn to the option discussed in Section 2.2 under which
the program recreates history. Recall that it performs a se-
quence of runs on increasing spans of data within the se-
ries. Starting from an initial segment of the series, the spans
grow with each new run by the addition of one observation
until the full series is included.

Qut-of-sample forecasts. To obtain information about a
model’s forecasting performance, the available time series
data outside each span can be regarded as future data to be
forecasted from a model fit to the span. These forecasts can
be compared to the actual series values or, for series values
identified as outliers, to the outlier-adjusted values. As an
option, the X-12-ARIMA program calculates the resulting
out-of-sample forecast errors and stores them for later anal-
ysis, along with their accumulating sums of squares. When
forecast errors are available from two competing models,
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the sequence of differences between the accumulating sums
of squared errors can be an effective model-selection diag-
nostic, as we shall demonstrate in Section 4.3 (see also Chen
and Findley 1996a,b). We now give a detailed description
of this diagnostic.

Assume that we are interested in h-step(-ahead) fore-
casting of the time series Y;,1 < t < N. Suppose that a
regARIMA model has been proposed for the transformed
series y; = f(Y;). Let Ny be a number less than N — h
that is large enough that the data v;,1 < t < Ny, can be
expected to yield reasonable estimates of the model’s co-
efficients. For each ¢t in Ng < t < N — h, let 4y, de-
note the forecast of y;1, obtained by estimating the reg-
ARIMA model using only the data y,,1 < s < ¢, and by
using this estimated model to forecast h steps from time ¢.
Then the out-of-sample h-step forecast of Y., is defined
to be Yiipie = f (ysgne). We define the associated fore-
cast error by epypr = Yipn — Yy if all AO, LS, and
ramp regressors in the regARIMA model for the full series
Y1,--.,yn have the value O at time ¢+ h. Otherwise, we de-
fine ey nje = [~ (Ye+n) — Yeyn)e» Where Gpyp is obtained by
subtracting from . all such regression effects. The main
diagnostic calculated by the program is the sequence of ac-
cumulating sums of squared out-of-sample forecast errors,

M
SShar =Y €ppM=No,...,N—h (17

t=Np

Suppose there are two competing models, Model 1 and
Model 2, with forecast errors egr)hi , and egr)hl , and with
sums SSS}W and SSEE}W, respectively. Then we plot a stan-

dardized version of the differences SSS}M~ SS%V[ de-
fined by

SSjx — SSions
SSN_n/(N — b — No)

2

ilz’,M = (18)

against M, for M = Ny, ..., N — h. The recursion formula

1) 2 (2) 2
(eM+1+h|M+1) - (eM+1+h|M+1)

SSy_n/(N = h — No)

1,2 1,2
SSp e =SSy +

MIN(),...,N—/'L—].,

shows that over intervals of values of A/ in which the graph
of (18) goes up, the forecast performance of Model 2 is bet-
ter; if it goes down, Model 1 is better; and if it has no gen-
eral direction, neither model’s forecast performance dom-
inates. The denominator in (18) provides a scale for the
interpretation of jumps in the graph.

This diagnostic has the important virtue of not requiring
the assumption that any of the models being compared is
correct. Its use is not limited to situations in which fore-
casting is the main goal of modeling, as the examples of
Section 4.3 will show.

AIC histories. Suppose the minimum AIC criterion is be-
ing used to decide between two models for Y7, ..., Yy with

AIC statistics AIC() and AICY _ _ Then the pref-
Nl|d+sD Nl|d+sD p

erence is determined by the sign of the difference

— AIC?

1,2 1)
AIC = AIC Nld+sD

N|d+sD Nld+sD
- 2{L§\27fd+sD N LS])d+sD} + Q{m(l) - m(2)},
(19)
where IAIE\Z,)' dtsD
and m() the number of estimated parameters of the ith
model, i = 1,2. Often one wishes to know something about
the stability of such a model choice. In the classical situ-
ation in which Model 1 is a constrained version of Model
2, under the assumption that Model 1 has the correct form,
the large-sample distribution of 2{]35\2,? drsD — ﬁ%f drsp) 18
chi-squared with m(? — m() df from which a probabil-
ity value can be calculated for AICJI\’,? 4ysp- Lhe assump-
tions required by this approach are too restrictive, how-
ever, not least because so many naturally occurring time
series model comparisons are like the comparison of (14)
and (16) in Subsection 3.3.1: Neither model is a constrained
version of the other. X-12-ARIMA’s AIC history option of-
fers a somewhat more versatile diagnostic of the stability
of minimum AIC model selections. For each model, the se-
quence of AIC values reestimated from subspans of data
Yi,..., Yy, No < M < N, can be obtained. From these,
the AIC difference sequence

denotes the maximized log-likelihood (12)

—Arct?

_ (1)
= AIC Mld+sD’

1,2
AIC M|d+sD

M|d+sD
No <M <N, (20

can be calculated and examined for constancy of sign. An
application of this diagnostic will be given in Section 4.4,

4. USING MODELS TO SOLVE ADJUSTMENT
PROBLEMS: FOUR EXAMPLES

We present four applications of regARIMA models and
the model-selection diagnostics discussed in Section 3.3 to
problems encountered in seasonal adjustment.

4.1 Using Regressors to Verify a Change in Seasonal
Pattern

For the regressors of Table 2 that model fixed sea-
sonal effects and trading-day effects and for their quarterly
analogs, X-12-ARIMA has a built-in procedure for model-
ing a change of regime at a user-specified point in time. We
illustrate the procedure for the fixed quarterly seasonal vari-
ables M, (which are defined like the fixed monthly seasonal
variables of Table 2) and a changepoint designated N,. For
1=1,2,3, define

ME = Mit’ ]-St.<_Nc
7000, N, <t<N,

where NV denotes the length of the modeled series. The pro-
gram models a change of regime by including both the M,
and the M in the regressor set.

We consider again the net income series of Figure 2. To
verify a change in seasonal pattern at the time point N,
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corresponding to the first quarter of 1982, X-12-ARIMA
was applied to estimate a model of the form

(1- B)(1— B"Y) {loth — BoLs{ 82

3

3 6
= D BiMy -y BEMS — Zﬁixit}
=1 =4

i=1

= (1-0B)(1 - 0B?)q,,

in which the regressors z;; model an additional LS identified
in the second quarter of 1980 and AQ’s identified in the
third quarter of 1974 and the first quarter of 1981. The AIC
of this model, calculated as in (13), has the value AIC¢ =
993.1. The model of the same form but without the A5 can
be used to represent the hypothesis of no change of seasonal
pattern. It has three fewer estimated parameters but a much
larger AIC value, AIC = 1,028.8. Hence, by the minimum
AIC criterion, the model with a change in seasonal pattern
is preferred.

A standard hypothesis test leads to the same conclusion.
Because the second model is a constrained version of the
first (with constraints 8¢ = 0), two times the difference of
log-likelihoods, which is equal to AIC — AIC®+2 x 3 =
41.7 [see (19)] can be compared to values of a chi-squared
distribution with 3 df under the hypothesis of no change of
regime. The value 41.7 strongly contradicts this hypothesis,
being extraordinarily large for this chi-squared distribution.

4.2 Using AO Regressors to Replace Missing Data

The regARIMA modeling capability of X-12-ARIMA
makes possible a rather simple approach to circumventing
or estimating missing observations. The procedure requires
the user to supply values for the missing observations (any
values will do) and to then fit a regARIMA model to the
completed dataset with AO regressors at the times of the
missing observations. (The value —99999. in the input se-
ries always denotes a missing value and causes the program
to insert the appropriate AO regressor automatically.) If V3,
is the value specified for the missing observation at time ¢,
and if 3;, is the estimated coefficient of the regressor AO?O)
in the fitted model, then the regression-adjusted value,

Y, =Y, — By, AOT), 1)

provides an estimate of the missing datum that the program
can use for calculating forecasts and seasonal decomposi-
tions. If the user requests autocorrelations and partial auto-
correlations of the differenced data to help identify a model,
then the OLS estimate 81 is used in (21) to provide an
estimate needed to calculate these statistics.

There is an alternative procedure that estimates a missing
datum via a regARIMA model’s Gaussian conditional ex-
pectation of the missing datum given the available data.
This procedure is optimal if the estimated model is the
true model and the data are Gaussian. It is implemented
in the regARIMA model-based signal-extraction seasonal-
adjustment programs TRAMO and SEATS of Gomez and
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Maravall (1994a,b). [Their procedure is equivalent to the
modified Kalman filter of Kohn and Ansley (1986), which
extends the approach proposed by Jones (1980) to the case
of models with differencing and missing data in the first
d + sD time points.] In the case of independent observa-
tions, it gives the same replacement values as (21) (Cook
and Weisberg 1982, p. 33). With regARIMA time series
models, theoretical calculations show that its values can be
expected to be well approximated by those of (21) (Bruce
and Martin 1989; Ljung 1993). We compared TRAMO’s
“optimal” estimates with X-12-ARIMA’s estimates from
(21) for several series from which observations were deleted
at random after a regARIMA model had been identified
for the full series. Observations that had been identified as
outliers were not candidates for deletion. The estimates of
the missing values from both procedures were always very
close to each other. They were also usually quite close to
the value of the deleted datum (< 2% error). The worst er-
ror observed, about 6%, occurred with the series of values
of manufacturers’ shipments of electrical appliances. The
estimation results for the three observations deleted from
this series are given in Table 3.

TRAMO also implements the procedure of (21). We fol-
lowed TRAMO’s use of —99999. as the missing value des-
ignator.

4.3 Comparing Trading-Day Estimation Procedures

We now wish to illustrate the versatility of the model-
comparison diagnostic (18). It is not obvious how to com-
pare estimates of effects from regression models of the ir-
regular component (Sec. 1.4) with analogous estimates from
regARIMA models of the observed series—for example,
the trading-day factors (2) and (15). Model-selection proce-
dures like those based on AIC comparisons are inapplica-
ble because the models are fit to different time series. We
shall show that forecast comparisons are possible because
forecasts of calendar effects estimated from a regression
model of the irregulars can be used to obtain forecasts of
the observed series. This enables us to call on the model-
comparison principle that a model that produces better fore-
casts can reasonably be assumed to produce calendar-effect
estimates that better describe what is present in the series.

To begin, we need to explain how X-12-ARIMA calcu-
lates out-of-sample h-step-ahead forecasts when an effect is
estimated from the irregular component. It will be sufficient
to discuss the case of trading-day factors (2) estimated from
the model (3). Given estimates of the coefficients 3y, . .., s,
the factors (2) can be calculated for all times . We use
TDI(&M) to denote the factors, when these coefficients have
been estimated from the reduced dataset Yi,...,Yy

Table 3. “Optimal” and AO Regressor Estimates of Deleted
Observations From Shipments of Electrical Appliances

Error Est. from Error

Date Value “Optimal” est. (%) 21) (%)
5/1977 661. 660.61 .06 660.48 .08
9/1979 1,088. 1,156.25 6.27 1,159.07 6.53

11/1981 1,397. 1,396.55 .04 1,396.07 .07




Downloaded by [Texas A & M International University] at 23:17 04 October 2014

Findley, Monsell, Bell, Otto, and Chen: New Capabilities and Methods of X-12-ARIMA 145

(a) 1-Step Forecasting
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(b) 12-Step Forecasting
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Figure 9. Comparison of Two Trading-Day-Effect Estimation Proce-
dures for Retail Shoe Sales via (18). Graphs are given for forecast leads
(a) h = 1 and (b) h = 12. Model 1 in (18) uses irregular component re-
gression estimates of the form (3) and Model 2 the regARIMA estimates
of the form (14). These graphs of the accumulating squared forecast
error differences show that, at both forecast leads, the squared forecast
errors of Model 1 are persistently larger.

(obtained without regARIMA forecast extension). A reg-
ARIMA model can be identified for the preadjusted series
Zt(N) =Y /TDEN ), 1 <t < N, possibly after nonlinear
transformation to f (Zt(N)). Then, with this model, out-of-
sample forecasts Yy ypas for each M = Ny, ..., N —h can
be calculated by the following steps:

1. Do trading-day estimation from the irregulars series of
Y1,..., Yy to obtain TDS™ fort =1,... M and t = M +h.

2. Let Z, = ¥;/TD{™) 1 < t < M. Calculate the out-of-
sample forecast Zprypjs as in Section 3.2.2 from the reg-
ARIMA model after estimating its parameters using only
the data z; = f(Z;),1 <t < M.

3. Calculate the forecast Yy ypjp = TD%}Q,LZ M| M-

The error ey, 5 s associated with this forecast is defined
to be Yaryn — Yiyon v provided that all AO, LS, and ramp
regressors in the regARIMA model for z;,..., 2y are O at
time M + h. Otherwise, define

M) ee1,-
EMthM = TDE\/HE;,,JC Y(Zm4n) = Yoo

where Zj/.p denotes the result of subtracting these regres-
sion effects from z,s4 5. The sequence SSj, s of accumulat-
ing sums of the squared errors €3, |, n,» - - €y 18 de-
fined by (17). Comparisons between competing trading-day
estimation approaches are made with graphs of the normal-

ized differences SS}; defined in (18). In the comparisons we
present, the model for Y; that incorporates preadjustment
by the X-11 trading-day factors (2) is designated Model 1,
and the model of the form (14) is Model 2. Therefore, de-
creasing graphs favor the irregulars-regression component
estimates and increasing graphs favor the regARIMA model
estimates.

In the study by Chen and Findley of X-12-ARIMA’s
various regARIMA trading-day models (Chen and Findley
1993, 1996a), there were 41 series for which the regARIMA
analog (14) of (3) was preferred over models that gave esti-
mates of a coefficient of the Leap Year regressor of Table 2
or that ignored length-of-month effects. For these 41 series,
it is natural to compare the approaches (14) and (3). This
was done via graphs of (18) for lags h = 1,12. Only for
eight series was one approach found better than the other:
The regARIMA trading-day model was favored five times
and the irregulars-regression model three times. We present
two examples of graphs of (18), one for each preference.

Figure 9 shows that, for the series of retail sales from
U.S. shoe stores up to 1989, the regARIMA trading-day
estimates lead to persistently better one-month and twelve-
month forecasts than the irregulars-regression estimates. By
contrast, Figure 10 reveals that, for the series of values of
U.S. factory shipments of communications equipment up to
1983, the one-month forecasts via the irregulars-regression

(a) 1-Step Forecasting
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(a) 12-Step Forecasting
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Figure 10. Comparison of Two Trading-Day-Effect Estimation Pro-
cedures for Values of Shipments of Communications Equipment. The
graphs are analogous to Figure 9. Here, only for one-step forecasting
are there indications of a recurring difference in performance: In an av-
erage sense, the squared forecast errors of Model 1 are smaller than
those of Model 2 after 1976.
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trading-day estimates are persistently better after 1977, and
the twelve-month forecasts are at least as good, on average,
as those of the regARIMA trading-day model.

There were no series for which the irregulars-regression
model had persistently better twelve-month forecasting and
five series for which its performance at lead 12 was persis-
tently worse. Because h = 12 is usually the most important
forecast lead for forecast extension, we have concluded that
the regARIMA model approach of (14) should be the first
approach considered, instead of that of (2), when a rea-
sonably well-fitting regARIMA model is available. (This
approach also provides the advantages AIC has over the
irregular regression F' statistic that we described in Sec-
tion 1.4.3.)

Similar comparisons of Easter-holiday-effect models es-
timated from the irregulars and from the observed series
were given by Chen and Findley (1996b). For all calendar-
effect model comparisons, including comparison of a model
with such a regressor to one without, each of the diagnos-
tics (18), sliding spans, revision histories, and AIC histories
can provide useful information.

4.4 Using AIC Histories to Decide Between
Preadjustments

Findley and Monsell (1989) considered the problem of
comparing a set of “subjective” preadjustments with a set
of “objective” preadjustments for the series of numbers of
units of autos sold multiplied by an average price for each
type of car. The values of this series from 1979 on are
graphed in Figure 11. The preadjustments were intended to
remove the effects of special, short-duration sales programs
involving cash rebates to purchasers. These programs were
used by the automobile manufacturers to reduce their inven-
tories of unsold cars. Such programs cause a large increase
in sales in the month or two in which they occur, followed
by a substantial decrease in the subsequent month or two. If
such programs occur in the same month several years in a
row, then seasonal-adjustment procedures incorporate much
of their effects into the seasonal factors. This is not correct
when it is known that the programs did not recur in later
years. To prevent this distortion of the seasonal factors, it
is necessary to estimate the effects of these sales programs
and remove them from the series prior to seasonal factor
calculation.

An expert analyst used her knowledge of the dates of
sales programs to select values of the irregular component
of an X-11 seasonal decomposition that she averaged to ob-
tain the preadjustment factors (divisors) for sales-program
effects that are graphed in Figure 11b. When she asked us
about this approach, we were concerned that the irregu-
lars series would be an unreliable source of information
about these effects because of distortions in the seasonal
component induced by the sales programs. As an alterna-
tive, we constructed five user-defined regressors to estimate
sales-program effects in the years 1985-1987—one regres-
sor each for the months of August, September, October,
and November and a single regressor for December 1986
and January 1987. To conform to the analyst’s specification
of identical effects for the same calendar month in succes-

Journal of Business & Economic Statistics, April 1998

sive years in which the month is affected, the regressors
for August, October, and November each had the value 1
in their month for 1985-1987 and the value O in all other
months. The September regressor deviated from the ana-
lyst’s pattern by having the value 1 in September of 1985
and 1986 but 0 in September of 1987 (and elsewhere), a de-
viation strongly preferred by AIC. The fifth regressor had
the values 1 in December 1986, —1 in January 1987, and 0
elsewhere. We naively assumed that the automatic outlier-
identification procedure described in Section 3.1 and Ap-
pendix C would deal effectively with any important sales-
program effects in months prior to 1985, where the analyst
had made numerous smaller preadjustments (the later data
were of greater interest). Our objectively obtained divisors,
estimated from a regARIMA model with the regressors just
described, are graphed in Figure 11(c) along with automat-
ically identified AO adjustments.

Findley and Monsell (1989) reported that the AIC value
of this model was smaller by 17.6 than the AIC of the
regARIMA model found for the series with the subjective
adjustments, indicating a strong preference for the objective
approach. A subsequent analysis of AIC’s preferences over
time using the diagnostic (20), however, showed that prior
to early 1985 the subjective adjustments were preferred.

(a) Original Series
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(b) Subjective Factors

AN~ A —

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

08 10 12 14

(c) Objective Factors

08 10 12 14

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
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Figure 11. Monthly Auto Sales by Units (a) and Three Competing
Series of Adjustment Factors Estimating the Effects of Manufacturers’
Sales Campaigns. The “subjective” factors (b) were informally derived
by a subject-matter expert from an irregular component. The objective
factors (¢) came from a regARIMA model. The hybrid factors (c) are
subjective factors up to 1985 and objective factors thereafter.
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Then W. P. Cleveland, who also had the analyst’s adjust-
ments, kindly pointed out to us that there were errors in
our divisor set. (The divisors in Fig. 11(b) are the cor-
rect ones.) Thus, it was appropriate to redo our analy-
sis. Labeling as Model 1 the regARIMA model that pro-
duced the objective factors of Figure 11(c) and as Model
2 the regARIMA model using only subjective preadjust-
ments (the automatic outlier-identification procedure found
no outliers), the graph of the history of the AIC differences
(20) given in Figure 12(a) leads to a conclusion similar to
the earlier one: Overall, the objective adjustments are fa-
vored (the final AIC difference is —13.7), but for a several-
year period beginning in 1983 the subjective adjustments
are better.

Therefore, we decided to try to replace Model 1 with
a better model. We did not want to add a large number
of regressors to imitate the analyst’s adjustments prior to
1985. So we fit a hybrid model, in which the subjective ad-
justments were applied prior to 1985, and the user-defined

(a) Objective(1) vs. Subjective(2)
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Figure 12. AIC Difference Histories (20) Comparing Two Pairs of
Models That Use Different Adjustment Factors of Figure 12. In (a), Model
1 uses the objective factors and Model 2 the subjective factors. In (b),
Model 1 uses the hybrid factors and Model 2 the subjective factors and
also the two AO variables used by Model 1. Only in (b) do the AIC
differences have a consistent sign, indicating a consistent preference for
Model 1. In this sense, the hybrid factors are preferred.

regressors were used thereafter, together with any automat-
ically identified AO’s. (There were two such AQO’s, one at
February 1975 and the other at December 1988.) The re-
sulting divisors are graphed in Figure 11(d). The AIC differ-
ence history favored the hybrid model throughout. Know-
ing that AO regressors can have a large impact on AIC
values, however, we wanted to determine if this conclusion
depended substantially on the AO’s included in the hybrid
model but not in the subjective model. To investigate this,
we augmented the latter model with the same two outlier
regressors. In the augmented model, the ¢ statistics of these
two AO regressors were below the critical value used in the
automatic outlier procedure but above 2.0. The AIC differ-
ence graph comparing the hybrid model and the augmented
subjective model is given as Figure 12(b). For the calcula-
tion of (20), the hybrid model is labeled Model 1 and the
augmented subjective model is Model 2. The graph shows
that the hybrid model is still consistently preferred. The fi-
nal AIC difference is —11.4 (about half of what its value
had been before the subjective model was augmented).

These analyses demonstrate the power of the AIC his-
tory diagnostic to enable difficult model comparisons and
to identify ways in which models under consideration can
be improved. Note that the forecast performance diagnos-
tics used in Section 4.3 are not applicable to the model
comparisons of this subsection because the models cannot
forecast the effects of interest.

5. THE USER INTERFACE: THREE EXAMPLES

Because the X-12-ARIMA program is designed for use
with a broad variety of operating systems, its interface uses
command files rather than windows and menus. We made
substantial efforts to design a command structure that is
largely self-descriptive and easy to do standard runs with.
The latter is especially important because the program has
very many adjustment and input/output options, yet its
users should be able to deal with most series knowing just
a few options. We now present some examples to give the
reader a feeling for the interface.

5.1 Processing a Single Series

The simplest situation is that in which a single series
is to be adjusted using default options. Suppose the series
named myseries is stored in free format in a file named
Xfile.dat in the same directory as the X-12-ARIMA pro-
gram, along with the command file. The command file will
be named myseries.spc and must have an extension
. spc, chosen to connote “specifications.”

The commands for the basic situation, in which reg-
ARIMA models are not used, and the program acts like
the X-11 program in its default setting [except that the
seasonal-filter length-selection criterion of Lothian (1984)
is used] are as follows, assuming myseries begins in
March of 1984:

series {start =1984.3 file = “Xfile.dat"}

x11 { }

To execute this .spc file, the command =x12a
myseries is entered. When the execution is finished,
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the program writes the default output to a file named
myseries.out in the same directory.

Suppose we wish instead to have what is essentially a de-
fault X-11-ARIMA run, with 12-month forecast and back-
cast extension from an ARIMA model selected from the
default list of models. Suppose also, though, that we want
to let AO’s and LS’s be automatically identified (using the
default ¢ statistic critical value 3.3 as described in Section
3.1 and Appendix C). The regression estimates of all iden-
tified AO’s and LS’s are to be adjusted out of the series
before seasonal factor calculations begin. Because the de-
fault seasonal-adjustment decomposition is multiplicative,
the log transform is chosen for the regARIMA models. For
the series of the previous example, the commands in the
specification file become

series {start = 1984.3 file = “Xfile.dat"}
transform {function = log}

automdl { }

outlier { }

x11 { }

5.2 Processing Many Series

There are features that facilitate running the program on
many series with many . spc files, but we shall illustrate
only the simple situation in which the same options, stored
in a single . spc file, are used for many series, all of which
have the same starting date and are stored in files with the
same format. This can occur when a group of related series
is examined for seasonality for the first time. It is also the
natural situation when simulation experiments are done to
investigate properties of seasonal adjustments or adjustment
procedures. Examples include the irregular-component re-
sampling approach to obtain standard errors for seasonal
adjustments described by Findley and Monsell (1990) and
the use of simulations to obtain confidence intervals for the
estimated duration of the Easter effect, described by Chen
and Findley (1996b). Studies using simulations to analyze
sources of nonlinearity in the X-11 procedure were per-
formed by Ghysels et al. (1996) and Findley (1996). With
one .spc file for many series, the names of the input files
are listed in a file that, in X-12-ARIMA terminology, is
called a data metafile.

Assume that we have 500 monthly series, siml,...,
sim500, of the same length, all starting in January 1970, all
stored with FORTRAN format (12F6.0) in the files named
siml.dat,...,sim500.dat. Suppose we wish to sea-
sonally adjust them with 3x9 seasonal moving averages and
17-term Henderson trend filters, after fitting the ARIMA (0,
1, 3)(0, 1, 1);2 model without a lag 2 moving average term
(via exact Gaussian likelihood maximization, the default es-
timation method) to extend each series with 60 forecasts.
To accomplish this, we create a data metafile whose name
has the extension dta, say sim.dta, containing the data
file names,

siml.dat

sim500.dat.
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In a . spc file, that we shall name series.spc, we place
the commands

series {start=1970.jan format="(6£12.0)"}
transform {function = log}

arima {model = (0 1 [1 3]1)(0 1 1)}

forecast {maxlead = 60}

x11 {seasonalma = s3 x 9 trendma = 17}

In this context, with a data metafile named sim.dta, the
command to execute the program is x12a series -d
sim. The -4 flag informs the program of the data metafile.

6. CONCLUDING REMARKS

The X-12-ARIMA program and its user’s manual
can be downloaded via ftp from the Internet address
ftp.census.gov. The FORTRAN source code is avail-
able, as are executable versions for five platforms, DOS
PC’s, and SUN, Hewlett Packard, DEC Alpha, and DEC
VAX workstations, in individual subdirectories of the di-
rectory pub/ts/x12a. This ftp site also has a version
customized by Margaret Keating of the Federal Reserve
Board for the FAME time series database system. We hope
that the easy availability of a versatile program for sea-
sonal adjustment, regARIMA modeling, and model selec-
tion will stimulate many statisticians, economic modelers,
and economic analysts to undertake refined analyses of sea-
sonal and calendar effects in their data. This would have
important indirect benefits: A substantial increase in the
number of economic data users having expertise in sea-
sonal adjustment would lead to a more sophisticated use
of adjusted data and would stimulate the development of
improved adjustment diagnostics, methods, and practices.
(The SEATS and TRAMO programs are available from
http://www.bde.es.)

The most obvious and important feature lacking in X-12-
ARIMA is high-resolution graphical diagnostics. Graphical
diagnostics for seasonal adjustment are an area that is ripe
for further research, 15 years after the pioneering work
done by the authors of SABL. We expect to begin work
soon on the development of a separate program to produce
such graphics from X-12-ARIMA output, one that will be
usable on a variety of computer platforms.
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APPENDIX A: THE PROTOTYPE X-11
DEFAULT CALCULATIONS

Calculations are shown with X-11’s default seasonal filter
choices in Step (c) of Stages 1 and 2. Calculations used to
reduce the influence of “extreme” values on seasonal factors
are omitted. Forecasts and backcasts are required to enable
the symmetric filters shown to be used near the ends of the
series.
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Y; denotes a monthly series with no extreme values; ex-
tended by forecasts and backcasts so that modified formulas
are not needed at the series’ ends.

Three types of decomposition of Y; into trend (7}), sea-
sonal (S¢), and irregular (I;) components are presented:

Multiplicative (M): Y, = T;5,. 1,
Additive (A): Yi=T,+ S, + 1,
Pseudo-Additive (PA): Y, = Ty(S: + I; — 1).

Stage 1. Initial Estimates
(a) Initial trend estimate via “centered 12-term” (13-
term) moving averages:

mziy iy 4o iy
& ga't8 T pits Tt ot

(b) Initial “SI ratio”:
(M, PA): SI{V = v, /1Y)
(A): SIY =y, — V.

(c) Initial preliminary seasonal factor via “3x 3” seasonal
moving average:

a1
W _ 1

1 2 1 3 1 2 1 1 1
g Slilastg ST+ g IV 45 S5 SIRY,.

(d) Initial seasonal factor:

S

(M, PA): S =

1 a(1) &(1) 1 &(1) 1 &(1)
ﬂst—6+_llfstv5+."+l_25t+5+ﬁst+6

&(1) &(1

(A) St(l) :S‘t(l) — <S—‘£_ﬁ + S‘E—)5 4+ Sii)f’ + ﬂﬁ)
: 24 :

12 12 24

(e) Initial seasonal adjustment:

Stage 2. Seasonal Factors and Seasonal Adjustment
The (2H +1)-term Henderson coefficients (see Appendix
B) are designated h;zHH), -H<j<H.

(a) Intermediate trend: For data-determined H (see Ap-
pendix B),

H
(2) _ (2H+1) 4(1)
T = > hPHT AL
j=—H

(b)

(M, PA): SI®? =v,/7®
(A): SI® =y, — 7@,
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(¢) Preliminary seasonal factor via “3 x 5 seasonal mov-
ing average:
(2 1 2 2 2 3 2
59 = I Slg—)i’)ﬁ ET SIg—)M T sL?,
3 3 (2) 2 2) 1

2 ‘ 2
T SI? + 5 SLiae + G Shiios + I SI)E—%-)36'

(d) Seasonal factor:

(2
(M, PA)ZSt(z): 13 1 a0 57 1 &2 1o
ﬂst—e+ﬁSt—5+"'+T§5t+5+ﬂSt+6

. FORI0) @ g
() 0= - (S e 4 B4 ).
(e) Seasonal adjustment:

(M) 4P = 5
2
(A AP =y, - g

PA): AP =y, - TP (s@ _1).
t t t

Stage 3. Final Henderson Trend and Final Irregular

(a) Final trend: For data-determined H, possibly different
from Stage 2(a):

H
3 2
r0 = 3 A,
j=—H
(b) Final irregular:
@
(M, PA): 1Y = ;‘53)
3 2 3
A 1P =AP -1,

Estimated decomposition:

M): Y, =171
A): Y =T® 4524 1®
(PA): Y =T(5P —1) + T 1.

APPENDIX B: HENDERSON FILTERS AND
MUSGRAVE SURROGATES

To provide a larger context for our discussion of the cri-
terion used to obtain many of the asymmetric filters and
to complete the description of the default X-11 procedure
of Appendix A, we start by outlining how the symmetric

Henderson filter coefficients h;ZH“) are derived.

B.1 The Symmetric Henderson Filters

In the appendix of Kenny and Durbin (1982), an in-
sightful derivation was given of the coefficients h*7+%)
of the symmetric Henderson filter and of the equivalence
of Henderson’s alternative criteria for determining them. It
was observed by Gray and Thomson (1996) that a slight
modification of Kenny and Durbin’s argument yields two
improvements—One need not assume a priori that the coef-
ficients are symmetric, and it is enough to require the filters
to reproduce quadratic trends instead of cubic trends. We
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summarize Gray and Thomson’s approach. Suppose that,
for —-(H+3) <j<H,

Ay =a+ B +7) +vt+7)? + Lyy, (B.1)

where the I,y ; are Gaussian variates with mean 0 and vari-
ance o2, which, for different j, are independent. We only
consider filters h;, —H < j < H, that provide unbiased es-
timates of the value of the quadratic trend at time ¢. Equiv-
alently, when the 7;,; in (B.1) are 0 for all j, we require

H

Z tht+j =a+ ,Bt + ’)’tz (Bz)
j=—H

for any values of «, 4, and . Let A denote the differencing
operator so that AA; = A;—A,_; and Ah; = h;—hj_1. Let
E denote expectation. Then, among filters satisfying (B.2),
the Henderson filter is the minimizer of the smoothness
measure E(A3 Zf:_H hj A4 ;)?. This can be reduced to a
smoothness measure on the filter coefficients,

H 2 H+3
E Ag Z h]‘AH_]‘ '—‘0'2 Z (Aghj)z,

j=—H j=—H

if we define h; =0 for j = +(H + 1), £(H +2), £(H + 3).
(On the left, A® is applied to the Ay45; on the right, to the
h;.) With g;(H) = {(H +1)* = j*H{(H +2)* - j*H{(H +
3)2 — j%}, and with @ and b determined by

H H
a Y qE)+b Y g(H)P? =1
j=—H j=—H
and
H H
a Y G(H)?+b Y g(H)j* =0,
j=—H j=—H

the Henderson coefficients are given by h§2H+1) _
qj(H)(a + bj%),—H < j < H. This formula shows they

§2H+1> = pBHD, They can be < 0.

are symmetric, h 5

B.2 Musgrave’s Criterion for Asymmetric Surrogates

So that the following discussion can encompass both
trend and seasonal filters, we change to a neutral notation,
W;, for the original filter coefficients and X ; for the vari-
ates to which they are applied. For given X;i,..., Xt and
positive integer J such that 2J +1 < T, we can calcu-
late Z};f 7 W; Xy ; only for indices ¢ satisfying J + 1 <
t < T — J. To obtain coefficients for calculating filtered
values at the remaining times ¢, Musgrave (1964) applied
a minimum mean squared revision criterion to the case in
which the X, are independent Gaussian variates with vari-
ance o2 and with a linear mean function, EX; = a + ft
[in contrast to the quadratic mean in (B.1)]. More precisely,
ift=T—J+d with 1 <d < J, Musgrave’s strategy [in-
dependently deduced by Laniel (1986)] is to find the asym-
metric filter whose coefficients V;, —J < j < J —d, sum to
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1 and also minimize

J J—d 2
E ( D> Wik — > Vth+j> :

j=—J j=—

In an unpublished report, Doherty (1992) derived an ex-
plicit formula for the coefficients of these abbreviated filters
that has been implemented in X-12-ARIMA. To have a con-
venient form, we change notation. Set N = 2J + 1, M =
N —d, and, for 1 < j < N, define w; = W;_;_; and
zj = Xy jy(j—1)- We are assuming that z; = v+ 85 +
I;, where the I; are independent Gaussian variates with
mean 0 and variance . Define A = |Ez; — Ez;_+|(=
(B),I = E|I; — I_1|(= 20/+/7), and R = A/I. Then the
coefficients v;,1 < j < M, satisfying Zj\il v; = 1 that
minimize

j=1

N M 2
E (Z wix; — Z’U]mj)
j=1

are given by

1 N
i=M+1

U - (457)) 2 R
M(M-1)(M
1+ MMUOTE) 4 pa

o e P

i=M-+1

—+

Doherty (1992) also derived a formula for the v; when
no assumption is made about the form of the mean func-
tion of the z;. With symmetric filters, wy11-; = w;, and
from this property it follows that the time-reversed fil-
ter coefficients vf‘ = un41-j,d + 1 < j < N minimize
E(Zé\;l wW;T; — Z;V:dﬂ vfiz;)? and therefore provide the
surrogates for symmetric filters near the beginning of the
time series.

In X-12-ARIMA, to obtain the default asymmetric surro-
gates for the 9-term and 13-term monthly Henderson filters,
R~!is set equal to .99 and 3.5, respectively. For longer Hen-
derson filters, R™! = 4.5 is used. For the 5-term and 7-term
quarterly filters, .001 and 4.5, respectively, are used. For the
3 x 9 seasonal filter, with the time index j having units of
years, R~! = 9.5 is used in (B.3) to determine asymmetric
surrogates.

Finally, we explain how the lengths are determined for
the Henderson filters used in (a) of Stages 2 and 3 of Ap-
pendix A. In each of these stages, an estimate R~ of R~ is
calculated as follows. Let T} denote the 13-term symmetric
Henderson trend of the available seasonally adjusted series
(Agl) in Stage 2, A§2> in Stage 3), and let I; denote the irreg-
ular component resulting from removing this trend estimate
from the seasonally adjusted series. With C' denoting the
sample mean of the available values of the absolute trend
changes |T; —Tt_ll and T the sample mean of the I, —; 1,
the value of the noise-to-signal ratio, R™* = I/C, called
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the I-bar C-bar ratio, determines the value of 2H + 1 as
follows. If Rt < 1.0, the 9-term Henderson filter is used.
Otherwise, in Stage 2, the 13-term filter is used. In Stage
3, the 13-term filter is used when 1 < R~ < 3.5, but the
23-term Henderson filter is used when R™! > 3.5. This
procedure is called the X-11 variable trend cycle routine.

APPENDIX C: THE PROCEDURE FOR AO
AND LS DETECTION

We describe the AO and LS detection procedure men-
tioned in Section 3.2. The algorithm proceeds from criti-
cal values v2°, 'S specified separately for the AO- and LS-
regressor ¢ statistics, denoted T2, T}®, that are calculated
at each time point ¢ in each iteration of the forward ad-
dition cycle to be described later. (The default values are
~2° = ~ = 38) Let T} denote one of these statistics,
~ the corresponding critical value, § and 1 the vectors of
regression coefficients and ARMA model coefficients, and
a(8,) the estimates of the innovations a; determined by
these coefficients in the model {10). AO regressors are avail-
able for all observation times 1 < ¢ < N, LS regressors for
all but the first two and the last of these times.

Initialization: Estimate the coefficients (5,v) of the
model (10) specified by the user. If the model includes pre-
specified AO and LS regressors, these will always be kept
in the regressor set.

Forward Addition:

1. Calculate the robust standard error, o = 1.49x

a
mediang|a: (8, 1)|, for the current 3, .

2. Using the current ¢ and af, calculate the values of T}
for all AO and LS regressors not currently in the model—
that is, excluding those prespecified or already identified in
forward addition. (To calculate T} for any given outlier re-
gressor, the generalized least squares estimation determined
by 1 is carried out for the regressors in the model plus the
given outlier regressor.) ,

3. Determine the outlier regressor with maximum |7%|.

4. If max|Ty| > ~, add this regressor to the model and
reestimate (8 and . Otherwise, stop.

Repeat Steps 1-4 until there are no additional outliers sat-
isfying |1}| > .

Backward Deletion: Start with the model including all
outlier regressors added in the forward addition stage.

1. Calculate maximum likelihood estimates of (3, ¢, 0q).

2. Using the estimated (8,9, 0,), calculate 7} for all AO
and LS regressors identified in forward addition that re-
main in the model. Determine which of these regressors
has min |Ty|.

3. If min|Ty| < ~, delete this regressor from the model
and go to 1. Otherwise, stop.

An alternative procedure is available that, at Step 4 of
forward addition, adds to the model all outlier regressors

[Received May 1996. Revised November 1997.]
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